983 resultados para bacterium
Resumo:
2. We documented the within-host distribution of two vector species that differ in transmission efficiency, the leafhoppers Draeculacephala minerva and Graphocephala atropunctata, and which are free to move throughout entirely caged alfalfa plants. The more efficient vector D. minerva fed preferentially at the base of the plant near the soil surface, whereas the less efficient G. atropunctata preferred overwhelming the top of the plant. 3. Next we documented X. fastidiosa heterogeneity in mechanically inoculated plants. Infection rates were up to 50% higher and mean bacterial population densities were 100-fold higher near the plant base than at the top or in the taproot. 4. Finally, we estimated transmission efficiency of the two leafhoppers when they were confined at either the base or top of inoculated alfalfa plants. Both vectors were inefficient when confined at the top of infected plants and were 20-60% more efficient when confined at the plant base. 5. These results show that vector transmission efficiency is determined by the interaction between leafhopper within-plant feeding behaviour and pathogen within-plant distribution. Fine-scale vector and pathogen overlap is likely to be a requirement generally for efficient transmission of vector-borne pathogens.
Resumo:
Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner) is a bacteria] pathogen transmitted by several Sharpshooters in two tribes of Cicadellinae (Proconiini and Cicadellini). Here, we compared the transmission efficiency of X. fastidiosa in coffee (Coffea arabica L) and citrus [Citrus sinensis (L) Osbeck] by Cicadellini [Bucephalogonia xanthophis (Berg) and Dilobopterus costalimai Young] and Proconiini [Homalodisca ignorata Melichar and Oncometopia facialis (Signoret) I sharpshooters that Occur in both crops. At different seasons, healthy adults of each species were submitted to a 48-h acquisition access period on citrus or coffee source plants infected with X. fastidiosa isolates that cause Citrus variegated chlorosis (CVC) and Coffee leaf scorch (CLS), respectively, and then confined on healthy seedlings of the corresponding host plant for a 48-h inoculation access period. No significant effect of inoculation season was observed when comparing infection rates of citrus or coffee plants inoculated by vectors at different times of the year. In Citrus, the transmission rate by single insects was significantly higher for H. ignorata (30%) in relation to B. xanthophis (5%) and O. facialis (1.1%) but there was no difference among vector species in coffee, whose transmission rates ranged from 1.2 to 7.2%. Comparing host plants, H. ignorata was more effective in transmitting X. fastidiosa to citrus (30%) in relation to coffee (2.2%), whereas the other vectors transmitted the bacterium to both hosts with similar efficiencies. Despite these variations. vector efficiency in coffee and Citrus is lower than that reported in other hosts.
Resumo:
Xylella fastidiosa is a vector-borne, plant-pathogenic bacterium that causes disease in citrus (citrus variegated chlorosis [CVC]) and coffee (coffee leaf scorch [CLS]) plants in Brazil. CVC and CLS occur sympatrically and share leafhopper vectors; thus, determining whether X. fastidiosa isolates can be dispersed from one crop to another and cause disease is of epidemiological importance. We sought to clarify the genetic and biological relationships between CVC- and CLS-causing X. fastidiosa isolates. We used cross-inoculation bioassays and microsatellite and multilocus sequence typing (MLST) approaches to determine the host range and genetic structure of 26 CVC and 20 CLS isolates collected from different regions in Brazil. Our results show that citrus and coffee X. fastidiosa isolates are biologically distinct. Cross-inoculation tests showed that isolates causing CVC and CLS in the field were able to colonize citrus and coffee plants, respectively, but not the other host, indicating biological isolation between the strains. The microsatellite analysis separated most X. fastidiosa populations tested on the basis of the host plant from which they were isolated. However, recombination among isolates was detected and a lack of congruency among phylogenetic trees was observed for the loci used in the MLST scheme. Altogether, our study indicates that CVC and CLS are caused by two biologically distinct strains of X. fastidiosa that have diverged but are genetically homogenized by frequent recombination.
Resumo:
Citrus black spot (CBS) caused by Guignardia citricarpa represents an important threat to citriculture in Brazil. Limited information is available regarding potential biological control agents and new alternative compounds that may provide protection of orange fruits against the disease. In this study, the effects of commercial products based on Bacillus thuringiensis var. kurstaki (Bt) bacterium, Bt pure isolates and Harpin protein (Messenger (R)) on the postharvest control of CBS, were evaluated in `Valencia` sweet orange fruits harvested for three consecutive years in a citrus grove. The fruits were sprayed with the following products: DiPel (R) WP (Bt, subspecies, kurstaki strain HD-1,16,000 International Units mg(-1), 32 g active ingredient kg(-1)) (1, 20 and 50 mg ml(-1)), Dimy Pel (R) WP (Bt, subspecies, kurstaki, strain HD-1, 17,600 IU mg(-1), 26 g active ingredient l(-1)) (2, 20 and 50 mg ml(-1)), Messenger (R) (3% harpin protein) (1 and 2 mg ml(-1)) and fungicide Tecto (R) Flowable SC (thiabendazole, 485 gl(-1)) (0.8g active ingredient l(-1)), besides the Bt isolates, Bt- HD-567, Bt- DiPel and Bt- Dimy (9 x 10(8) CFU ml(-1)). Ten days after treatment, the number of newly developed CBS lesions and pycnidia produced were evaluated using fifty fruits per treatment. The Dimy Pel (R) and Messenger (R) reduced the number of new developed CBS lesions on fruits in up to 67% and 62%, respectively. All applied treatments drastically decreased the number of pycnidia produced in the CBS lesions on orange fruits with 85% to 96% reductions compared to the untreated control. Volatile compounds produced by the isolates Bt- HD-567, Bt- Dimy and Bt- DiPel, reduced the number of lesions on treated fruits by 70%, 65% and 71% compared to the control, respectively. In addition, the survival of Bt isolates on orange fruit surfaces were evaluated by recovering and quantifying the number of CFU every seven days for up to 28 days. The declines in survival rates on orange fruit surfaces were drastic for the three strains of Bt in the first week. The CFU numbers of all applied isolates declined by 4 to 5 orders of magnitude after storage at room temperature for 28 days. In vitro assays revealed that the Bt isolates significantly reduced the mycelial growth of the pathogen, ranging from 32% to 51%, compared to the control, whereas no inhibitory effect was observed in the presence of Messenger (R). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.
Resumo:
Methylobacterium mesophilicum, originally isolated as an endophytic bacterium from citrus plants, was genetically transformed to express green fluorescent protein (GFP). The GFP-labeled strain of M. mesophilicum was inoculated into Catharanthus roseus (model plant) seedlings and further observed colonizing its xylem vessels. The transmission of this endophyte by Bucephalogonia xanthophis, one of the insect vectors that transmit Xylella fastidiosa subsp. pauca, was verified by insects feeding from fluids containing the GFP bacterium followed by transmission to plants and isolating the endophyte from C. roseus plants. Forty-five days after inoculation, the plants exhibited endophytic colonization by M. mesophilicum, confirming this bacterium as a nonpathogenic, xylem-associated endophyte. Our data demonstrate that M. mesophilicum not only occupy the same niche of X. fastidiosa subsp. pauca inside plants but also may be transmitted by B. xanthophis. The transmission, colonization, and genetic manipulation of M. mesophilicum is a prerequisite to examining the potential use of symbiotic control to interrupt the transmission of X. fastidiosa subsp. pauca, the bacterial pathogen causing Citrus variegated chlorosis by insect vectors.
Resumo:
Harmless bacteria inhabiting inner plant tissues are termed endophytes. Population fluctuations in the endophytic bacterium Pantoea agglomerans associated with two species of field cultured citrus plants were monitored over a two-year period. The results demonstrated that populations of P. agglomerans fluctuated in Citrus reticulata but not C. sinensis. A cryptic plasmid pPA3.0 (2.9 kb) was identified in 35 out of 44 endophytic isolates of P. agglomerans and was subsequently sequenced. The origins of replication were identified and nine out of 18 open reading frames (ORFs) revealed homology with described proteins. Notably, two ORFs were related to cellular transport systems and plasmid maintenance. Plasmid pPA3.0 was cloned and the gfp gene inserted to generate the pPAGFP vector. The vector was introduced into P. agglomerans isolates and revealed stability was dependent on the isolate genotype, ninety-percent stability values were reached after 60 hours of bacterial cultivation in most evaluated isolates. In order to definitively establish P. agglomerans as an endophyte, the non-transformed bacterium was reintroduced into in vitro cultivated seedlings and the density of inner tissue colonization in inoculated plants was estimated by bacterium re-isolation, while the tissue niches preferred by the bacterium were investigated by scanning electronic microscopy (SEM). Cells from P. agglomerans (strain ARB18) at similar densities were re-isolated from roots, stems and leaves and colonization of parenchyma and xylem tissues were observed. Data suggested that P. agglomerans is a ubiquitous citrus endophyte harboring cryptic plasmids. These characteristics suggest the potential to use the bacterium as a vehicle to introduce new genes in host plants via endophytic bacterial transformation.
Resumo:
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.
Resumo:
The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.
Resumo:
The soil bacterium Pseudomonas fluorescens Pf-5 produces two siderophores, a pyoverdine and enantio-pyochelin, and its proteome includes 45 TonB-dependent outer-membrane proteins, which commonly function in uptake of siderophores and other substrates from the environment. The 45 proteins share the conserved beta-barrel and plug domains of TonB-dependent proteins but only 18 of them have an N-terminal signaling domain characteristic of TonB-dependent transducers (TBDTs), which participate in cell-surface signaling systems. Phylogenetic analyses of the 18 TBDTs and 27 TonB-dependent receptors (TBDRs), which lack the N-terminal signaling domain, suggest a complex evolutionary history including horizontal transfer among different microbial lineages. Putative functions were assigned to certain TBDRs and TBDTs in clades including well-characterized orthologs from other Pseudomonas spp. A mutant of Pf-5 with deletions in pyoverdine and enantio-pyochelin biosynthesis genes was constructed and characterized for iron-limited growth and utilization of a spectrum of siderophores. The mutant could utilize as iron sources a large number of pyoverdines with diverse structures as well as ferric citrate, heme, and the siderophores ferrichrome, ferrioxamine B, enterobactin, and aerobactin. The diversity and complexity of the TBDTs and TBDRs with roles in iron uptake clearly indicate the importance of iron in the fitness and survival of Pf-5 in the environment.
Resumo:
Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual-culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.
Resumo:
The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regal-ding naturally, occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, Such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested it novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported ill this work have been described as providing benefits to host plants. Therefore, we Suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant.
Resumo:
Connectivity of the glycocalyx covering of small communities of Acidithiobacillus ferrooxidans bacteria deposited on hydrophilic mica plates was imaged by atomic force microscopy. When part of the coverage was removed by water rinsing, an insoluble structure formed by corrals surrounding each individual bacterium was observed. A collective ring structure with clustered bacteria (>= 3) was observed, which indicates that the bacteria perceived the neighborhood in order to grow a protective structure that results in smaller production of exopolysaccharides material. The most surprising aspect of these collective corral structures was that they occur at a low bacterial cell density. The deposited layers were also analyzed by confocal Raman microscopy and shown to contain polysaccharides, protein, and glucoronic acid.
Resumo:
Vibrio parahaemolyticus is a potentially pathogenic bacterium that occurs naturally in estuarine environments worldwide, and is often associated with gastroenteritis in humans following consumption of raw bivalve mollusks, especially raw oysters. The occurrence of total and pathogenic V. parahaemolyticus in 74 samples of raw oysters collected in restaurants, supermarkets, groceries and beach huts in Sao Paulo State, was monitored between February 2006 and January 2007. Enumeration of V. parahaemolyticus was performed according to the most probable number (MPN) procedure. Five to ten typical colonies were selected from thiosulfate-citrate-bile salts-sucrose (TCBS) agar plates for confirmation by the presence of the species-specific gene tlh and the virulence genes tdh and trh by multiplex PCR. V. parahaemolyticus was detected in 100% of samples. The densities of total V. parahaemolyticus varied from 1.78 to 6.04 logio (MPN/g), with higher densities being detected in fall and summer, and lower densities in winter (P < 0.05). There was no statistical difference among densities of V parahaemolyticus regarding the site of collection. None of the 1943 V parahaemolyticus isolates contained tdh and/or trh. These data provide information for the assessment of exposure to V. parahaemolyticus in oysters consumed in Sao Paulo, State, Brazil. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Infections caused by Corynebacterium diphtheriae frequently induce situations in which very small doses of antigens injected intradermally can cause strong inflammatory reactions. This bacterium secretes the diphtheria toxin (DT), a virulence factor that can be lethal to the human organism at doses below 0.1 mu g/kg of body weight. The present work proposes alternative methods of DT purification using affinity chromatography and of DT detoxification through conjugating with the polymer methoxypolyethylene glycol activated (mPEG). Tests were performed to evaluate: the formation of edemas and the presence of dermonecrotic activity, in vitro cytotoxicity to Vero cells, the neutralizing activity of serum from guinea pigs immunized with the diphtheria toxoid inactivated with mPEG, and the immunogenic activity of the purified and modified toxin. The results indicated that purification with Blue Sepharose was an efficient method, yielding antigen purity equivalent to 2600 Lf/mg of protein nitrogen. The modification of the Purified Toxin with mPEG did not result in the formation of edema or necrosis although it was immunogenic and stimulated the formation of antibodies that could neutralize the Purified Toxin. The toxoid obtained from the purified toxin maintained its immunogenic characteristics, inducing antibodies with neutralizing activity; edema and necrosis were still observed, however. (C) 2011 Elsevier Ltd. All rights reserved.