915 resultados para avian species richness


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some species of bird are closely associated with bamboos (bamboo specialists) but community-wide studies comparing the avian assemblages in bamboo and non-bamboo habitats are lacking. Using point counts, we compared the species richness, abundance and composition of the avian assemblages in bamboo and non-bamboo habitats in the Brazilian Atlantic forest. Apart from considering bamboo specialists and non-specialist species, we contrasted birds from different categories of forest dependence, forest strata and diet. We recorded a total of 81 species of birds (74 in bamboo, 55 in non-bamboo habitats), including 15 bamboo specialists. Species richness was greater in bamboo habitats in all categories of diet and forest dependence. Bamboo and non-bamboo habitats had a similar number of canopy species, but bamboo habitats had a greater number of non-canopy species. The abundance of the whole avian community or of each of the dietary categories did not differ between habitats. The overall species composition differed between habitats, with a more homogeneous composition in non-bamboo habitats. A great number of species use bamboo habitats, even if they are not bamboo specialists. The initial expansion of bamboos, forming discrete patches of bamboo within mature forest, represents an intermediate-level disturbance that enhances forest heterogeneity and promotes the diversity of avian communities. © BirdLife Australia 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No hemisfério norte, o censo de aves é fundamental para gerar informações que auxiliam na compreensão de tendências populacionais. Tais censos, devido à marcada sazonalidade deste hemisfério, são realizados durante dois momentos distintos: na estação reprodutiva (aves residentes) e no inverno (quando as aves migratórias deixam determinadas regiões). Na região neotropical, porém, dependendo da localidade, as aves podem se reproduzir durante qualquer ou vários períodos do ano; podem ou não migrar, e aquelas que o fazem podem apresentar um padrão assincrônico. Em contraste com o hemisfério norte, tendências populacionais são desconhecidas, bem como o impacto das taxas rápidas de urbanização e desmatamento, que também são pouco monitoradas. Para melhor entender padrões temporais de riqueza e abundância de aves, e avaliar como um censo similar pode ser implementado na América tropical, foram utilizados pontos de escuta ao longo de 12 meses em uma localidade no Estado de São Paulo, sudeste do Brasil. Os censos ocorreram duas vezes por dia (manhãs/tardes) em uma floresta semidecidual ao longo de transecções com 10 pontos (20 pontos por dia) distantes 200 m entre si e com raio de detecção limitado em 100 m. Ambas as riquezas e abundâncias de aves foram maiores durante as manhãs, mas as curvas de acumulação sugerem que os censos vespertinos com maior esforço amostral podem fornecer resultados similares aos censos matutinos. Riqueza e abundância das aves não variam de acordo com estações (i.e., sem padrão aparente entre reprodução e migração), enquanto espécies exclusivas foram encontradas todos os meses e relativamente poucas espécies (20%) foram registradas em todos os meses do ano. Durante este ano, 84% de todas as aves florestais da área estudada foram registradas. Sugerimos que a metodologia de pontos de escuta pode ser utilizada à semelhança dos censos do hemisfério norte. Recomendamos ainda que o esforço amostral em transecções deva incluir ao menos 20 pontos, e que o início da contagem das aves deva ser sazonal, utilizando o período de migração das espécies austrais (e os seis meses seguintes) para coordenar pontos de escuta. Por último, sugerimos que os censos no Brasil e até mesmo na América Latina podem ajudar no entendimento de tendências populacionais, mas também demandam maior esforço do que o observado em latitudes temperadas, devido à maior riqueza de espécies e diferenças nas dinâmicas de reprodução e migração. Por meio do uso de censos de aves coordenados poderá ser desenvolvida uma técnica para os trópicos que irá gerar informações que permitam acompanhar tendências populacionais, com benefícios para a conservação das aves, similarmente aos censos realizados em países do hemisfério norte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Broad-spectrum herbicide applications and improved harvesting efficiency of crops have reduced the availability of weed seeds and waste grains for game and nongame wildlife. Over the last decade, corn and soybean plantings have steadily increased in the Prairie Pothole Region (PPR) of North Dakota, while sunflower plantings have declined. The PPR is an important corridor for migratory birds, and changes in food availabilities at stopover habitats may affect how food resources are used. In early spring 2003 and 2004, we compared bird use of harvested fields of sunflower, soybeans, small grains, and corn in the PPR of North Dakota. Across both years and all crop types, we observed 20,400 birds comprising 29 species. Flocks of Lapland Longspurs (Calcarius lapponicus) and Horned Larks (Eremophila alpestris) and flocks of Red-winged Blackbirds (Agelaius phoeniceus) made up 60% and 15%, respectively, of the bird counts. We found that species richness and bird densities were higher in harvested sunflower fields and cornfields than in harvested small-grain and soybean fields, with soybean fields harboring the fewest species and lowest bird density. Blackbird densities tended to be lower in fields tilled after fall harvest than in fields not tilled. These results suggest that some granivorous bird populations in the Northern Great Plains could be positively affected by planting of row crops with postharvest vertical structure (e.g., sunflower, corn) and use of no-till land management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Verbreitung von Vögeln kann von sehr unterschiedlichen Faktoren (z.B. Habitatstruktur, Klima, Nahrungsverfügbarkeit, Evolutionsgeschichte) beeinflusst werden, die zudem auf verschiedenen räumlichen Skalen (lokal bis global) unterschiedlich wirken. In dieser Dissertation wurde die Artenvielfalt früchtefressender Vogelarten auf regionalem, kontinentalem und globalem Maßstab untersucht und getestet ob sie von Habitatstruktur (Landnutzung, Topographie, Vegetationsstruktur), Klima (Temperatur, Niederschlag, Evapotranspiration), Nahrungsressourcen (früchtetragende Baumarten), oder historischen Faktoren (biogeographische Region) bestimmt wird. Dazu wurden umfangreiche geographische Datenbanken auf verschiedenen räumlichen Skalen, d.h. auf regionalem (Kenia), kontinentalem (Afrika), und globalem (Welt) Maßstab, ausgewertet, die die Verbreitung aller Vogelarten und wichtiger Umweltfaktoren enthalten. Statistische Analysen auf globalem Maßstab zeigten, dass die Verbreitung von Früchtefressern sehr gut mit klimatischen Variablen, insbesondere aktueller Evapotranspiration und Produktivität, beschrieben werden kann. Unterschiede zwischen biogeographischen Regionen bleiben jedoch bestehen auch wenn für klimatische Unterschiede zwischen den Regionen korrigiert wird. Weiter zeigen unterschiedliche Ordnungen mit früchtefressenden Vogelarten unterschiedliche Diversifizierungsmuster. Dies deutet darauf hin, dass auch historische Faktoren, wie die Klima- und Evolutionsgeschichte, eine wichtige Rolle spielen. Analysen auf regionalem und kontinentalem Maßstab legen nahe, dass klimatische Faktoren im Wesentlichen indirekt auf die Artenvielfalt von Früchtefressern wirken, und zwar durch funktionelle Beziehungen zwischen Früchtefressern und Bäumen (z.B. trophische Interaktionen mit wichtigen Nahrungspflanzen, Vegetationsstruktur). Die Ergebnisse dieser Dissertation zeigen, dass biotische Interaktionen, direkte und indirekte klimatische Effekte, und das Zusammenwirken von Evolutionsgeschichte und heutigen Umweltbedingungen untersucht werden müssen um den Artenreichtum von Vögeln auf großem räumlichem Maßstab zu verstehen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species instead of coniferous plantations, and (5) increasing the amount of deadwood in forests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the impact of changing temperature regimes on composition and diversity of cryptogam communities in the Arctic and Subarctic, despite the well-known importance of lichens and bryophytes to the functioning and climate feedbacks of northern ecosystems. We investigated changes in diversity and abundance of lichens and bryophytes within long-term (9-16 years) warming experiments and along natural climatic gradients, ranging from Swedish subarctic birch forest and subarctic/subalpine tundra to Alaskan arctic tussock tundra. In both Sweden and Alaska, lichen diversity responded negatively to experimental warming (with the exception of a birch forest) and to higher temperatures along climatic gradients. Bryophytes were less sensitive to experimental warming than lichens, but depending on the length of the gradient, bryophyte diversity decreased both with increasing temperatures and at extremely low temperatures. Among bryophytes, Sphagnum mosses were particularly resistant to experimental warming in terms of both abundance and diversity. Temperature, on both continents, was the main driver of species composition within experiments and along gradients, with the exception of the Swedish subarctic birch forest where amount of litter constituted the best explanatory variable. In a warming experiment in moist acidic tussock tundra in Alaska, temperature together with soil ammonium availability were the most important factors influencing species composition. Overall, dwarf shrub abundance (deciduous and evergreen) was positively related to warming but so were the bryophytes Sphagnum girgensohnii, Hylocomium splendens and Pleurozium schreberi; the majority of other cryptogams showed a negative relationship to warming. This unique combination of intercontinental comparison, natural gradient studies and experimental studies shows that cryptogam diversity and abundance, especially within lichens, is likely to decrease under arctic climate warming. Given the many ecosystem processes affected by cryptogams in high latitudes (e.g. carbon sequestration, N2-fixation, trophic interactions), these changes will have important feedback consequences for ecosystem functions and climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bellii), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how biodiversity spatially distribute over both the short term and long term, and what factors are affecting the distribution, are critical for modeling the spatial pattern of biodiversity as well as for promoting effective conservation planning and practices. This dissertation aims to examine factors that influence short-term and long-term avian distribution from the geographical sciences perspective. The research develops landscape level habitat metrics to characterize forest height heterogeneity and examines their efficacies in modelling avian richness at the continental scale. Two types of novel vegetation-height-structured habitat metrics are created based on second order texture algorithms and the concepts of patch-based habitat metrics. I correlate the height-structured metrics with the richness of different forest guilds, and also examine their efficacies in multivariate richness models. The results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and richness models of two forest bird guilds. The metrics and models derived in this study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of spatial patterns in species richness. The second and the third projects focus on analyzing centroids of avian distributions, and testing hypotheses regarding the direction and speed of these shifts. I first showcase the usefulness of centroids analysis for characterizing the distribution changes of a few case study species. Applying the centroid method on 57 permanent resident bird species, I show that multi-directional distribution shifts occurred in large number of studied species. I also demonstrate, plain birds are not shifting their distribution faster than mountain birds, contrary to the prediction based on climate change velocity hypothesis. By modelling the abundance change rate at regional level, I show that extreme climate events and precipitation measures associate closely with some of the long-term distribution shifts. This dissertation improves our understanding on bird habitat characterization for species richness modelling, and expands our knowledge on how avian populations shifted their ranges in North America responding to changing environments in the past four decades. The results provide an important scientific foundation for more accurate predictive species distribution modeling in future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we investigate the relationship between tree species diversity and production in 18 mixed-species plantations established under the Rainforestation Farming system in Leyte province, the Philippines. The aim was to quantify productivity in the mixed-species plantations in comparison to the monocultures, and identify key drivers of productivity including environmental conditions, stand structural characteristics and surrogate measures of biodiversity, i.e. species richness, Shannon’s diversity index and functional groups. We found that monocultures had a much higher productivity than mixtures of the same and other species. In the mixtures, biodiversity and productivity did not have a simple relationship. Instead the proportion of exotic and native species, and the proportion of fast-growing species had a marginally significant positive effect on stand productivity, but no significant relationship was found with species richness or Shannon’s diversity. Instead stand structural characteristics such as density and age were the strongest drivers of increased productivity. Production levels within the mixed-species plantations varied significantly between sites. Overall, we found that the productivity of mixed species plantations was driven more by the characteristics of species present and stand structural characteristics then by simply the number and abundance of species, which suggests management practices are key for balancing multiple objectives to meet sustainable development needs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of Eragrostis curvula (African Lovegrass, herafter Lovegrass) for pasture improvement across Australia has not been successful. Instead Lovegrass, a C4 perennial grass originating from Southern African, has proven unpalatable to stock and to have low nutritional value if stocks do eat it. It has spread prolifically along roadsides, stream banks, conservation areas and pastures. Because control efforts have not been effective, our aim was to determine the putative mechanisms responsible for the dominance of Lovegrass, specifically disturbance (selective grazing) and competition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In studies using macroinvertebrates as indicators for monitoring rivers and streams, species level identifications in comparison with lower resolution identifications can have greater information content and result in more reliable site classifications and better capacity to discriminate between sites, yet many such programmes identify specimens to the resolution of family rather than species. This is often because it is cheaper to obtain family level data than species level data. Choice of appropriate taxonomic resolution is a compromise between the cost of obtaining data at high taxonomic resolutions and the loss of information at lower resolutions. Optimum taxonomic resolution should be determined by the information required to address programme objectives. Costs saved in identifying macroinvertebrates to family level may not be justified if family level data can not give the answers required and expending the extra cost to obtain species level data may not be warranted if cheaper family level data retains sufficient information to meet objectives. We investigated the influence of taxonomic resolution and sample quantification (abundance vs. presence/absence) on the representation of aquatic macroinvertebrate species assemblage patterns and species richness estimates. The study was conducted in a physically harsh dryland river system (Condamine-Balonne River system, located in south-western Queensland, Australia), characterised by low macroinvertebrate diversity. Our 29 study sites covered a wide geographic range and a diversity of lotic conditions and this was reflected by differences between sites in macroinvertebrate assemblage composition and richness. The usefulness of expending the extra cost necessary to identify macroinvertebrates to species was quantified via the benefits this higher resolution data offered in its capacity to discriminate between sites and give accurate estimates of site species richness. We found that very little information (<6%) was lost by identifying taxa to family (or genus), as opposed to species, and that quantifying the abundance of taxa provided greater resolution for pattern interpretation than simply noting their presence/absence. Species richness was very well represented by genus, family and order richness, so that each of these could be used as surrogates of species richness if, for example, surveying to identify diversity hot-spots. It is suggested that sharing of common ecological responses among species within higher taxonomic units is the most plausible mechanism for the results. Based on a cost/benefit analysis, family level abundance data is recommended as the best resolution for resolving patterns in macroinvertebrate assemblages in this system. The relevance of these findings are discussed in the context of other low diversity, harsh, dryland river systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soundscape assessment has been proposed as a remote ecological monitoring tool for measuring biodiversity, but few studies have examined how soundscape patterns vary with landscape configuration and condition. The goal of our study was to examine a suite of published acoustic indices to determine whether they provide comparable results relative to varying levels of landscape fragmentation and ecological condition in nineteen forest sites in eastern Australia. Our comparison of six acoustic indices according to time of day revealed that two indices, the acoustic complexity and the bioacoustic index, presented a similar pattern that was linked to avian song intensity, but was not related to landscape and biodiversity attributes. The diversity indices, acoustic entropy and acoustic diversity, and the normalized difference soundscape index revealed high nighttime sound, as well as a dawn and dusk chorus. These indices appear to be sensitive to nocturnal biodiversity which is abundant at night in warm, subtropical environments. We argue that there is need to better understand temporal partitioning of the soundscape by specific taxonomic groups, and this should involve integrated research on amphibians, insects and birds during a 24 h cycle. The three indices that best connected the soundscape with landscape characteristics, ecological condition and bird species richness were acoustic entropy, acoustic evenness and the normalized difference soundscape index. This study has demonstrated that remote soundscape assessment can be implemented as an ecological monitoring tool in fragmented Australian forest landscapes. However, further investigation should be dedicated to refining and/or combining existing acoustic indices and also to determine if these indices are appropriate in other landscapes and for other survey purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.