997 resultados para authentication test
Resumo:
Billing Mediation Platform (BMP) in telecommunication industry is used to process real-time streams of Call Detail Records (CDRs) which can be a massive number a day. The generated records by BMP can be deployed for billing purposes, fraud detection, spam filtering, traffic analysis, and churn forecast. Several of these applications are distinguished by real-time processing requiring low-latency analysis of CDRs. Testing of such a platform carries diverse aspects like stress testing of analytics for scalability and what-if scenarios which require generating of CDRs with realistic volumetric and appropriate properties. The approach of this project is to build user friendly and flexible application which assists the development department to test their billing solution occasionally. These generators projects have been around for a while the only difference are the potions they cover and the purpose they will be used for. This paper proposes to use a simulator application to test the BMPs with simulating CDRs. The Simulated CDRs are modifiable based on the user requirements and represent real world data.
Resumo:
A Maintenance Test Section Survey (MTSS) was conducted as part of a Peer State Review of the Texas Maintenance Program conducted October 5–7, 2010. The purpose of the MTSS was to conduct a field review of 34 highway test sections and obtain participants’ opinions about pavement, roadside, and maintenance conditions. The goal was to cross reference or benchmark TxDOT’s maintenance practices based on practices used by selected peer states. Representatives from six peer states (California, Georgia, Kansas, Missouri, North Carolina, and Washington) were invited to Austin to attend a 3-day Peer State Review of TxDOT Maintenance Practices Workshop and to participate in a field survey of a number of pre-selected one-mile roadway sections. It should be emphasized that the objective of the survey was not to evaluate and grade or score TxDOT’s road network but rather to determine whether the selected roadway sections met acceptable standards of service as perceived by Directors of Maintenance or senior maintenance managers from the peer states...
Resumo:
Learning to think spatially in mathematics involves developing proficiency with graphics. This paper reports on 2 investigations of spatial thinking and graphics. The first investigation explored the importance of graphics as 1 of 3 communication systems (i.e. text, symbols, graphics) used to provide information in numeracy test items. The results showed that graphics were embedded in at least 50 % of test items across 3 year levels. The second investigation examined 11 – 12-year-olds’ performance on 2 mathematical tasks which required substantial interpretation of graphics and spatial thinking. The outcomes revealed that many students lacked proficiency in the basic spatial skills of visual memory and spatial perception and the more advanced skills of spatial orientation and spatial visualisation. This paper concludes with a reaffirmation of the importance of spatial thinking in mathematics and proposes ways to capitalize on graphics in learning to think spatially.
Resumo:
A number of tests and test batteries are available for the prediction of older driver safety, but many of these have not been validated against standardized driving outcome measures. The aim of this study was to evaluate a series of previously described screening tests in terms of their ability to predict the potential for safe and unsafe driving. Participants included 79 community-dwelling older drivers (M=72.16 years, SD=5.46; range 65-88 years; 57 males and 22 females) who completed a previously validated multi-disciplinary driving assessment, a hazard perception test, a hazard change detection test and a battery of vision and cognitive tests. Participants also completed a standardized on-road driving assessment. The multi-disciplinary test battery had the highest predictive ability with a sensitivity of 80% and a specificity of 73%, followed by the hazard perception test which demonstrated a sensitivity of 75% and a specificity of 61%. These findings suggest that a relatively simple and practical battery of tests from a range of domains has the capacity to predict safe and unsafe driving in older adults.
Resumo:
Most current computer systems authorise the user at the start of a session and do not detect whether the current user is still the initial authorised user, a substitute user, or an intruder pretending to be a valid user. Therefore, a system that continuously checks the identity of the user throughout the session is necessary without being intrusive to end-user and/or effectively doing this. Such a system is called a continuous authentication system (CAS). Researchers have applied several approaches for CAS and most of these techniques are based on biometrics. These continuous biometric authentication systems (CBAS) are supplied by user traits and characteristics. One of the main types of biometric is keystroke dynamics which has been widely tried and accepted for providing continuous user authentication. Keystroke dynamics is appealing for many reasons. First, it is less obtrusive, since users will be typing on the computer keyboard anyway. Second, it does not require extra hardware. Finally, keystroke dynamics will be available after the authentication step at the start of the computer session. Currently, there is insufficient research in the CBAS with keystroke dynamics field. To date, most of the existing schemes ignore the continuous authentication scenarios which might affect their practicality in different real world applications. Also, the contemporary CBAS with keystroke dynamics approaches use characters sequences as features that are representative of user typing behavior but their selected features criteria do not guarantee features with strong statistical significance which may cause less accurate statistical user-representation. Furthermore, their selected features do not inherently incorporate user typing behavior. Finally, the existing CBAS that are based on keystroke dynamics are typically dependent on pre-defined user-typing models for continuous authentication. This dependency restricts the systems to authenticate only known users whose typing samples are modelled. This research addresses the previous limitations associated with the existing CBAS schemes by developing a generic model to better identify and understand the characteristics and requirements of each type of CBAS and continuous authentication scenario. Also, the research proposes four statistical-based feature selection techniques that have highest statistical significance and encompasses different user typing behaviors which represent user typing patterns effectively. Finally, the research proposes the user-independent threshold approach that is able to authenticate a user accurately without needing any predefined user typing model a-priori. Also, we enhance the technique to detect the impostor or intruder who may take over during the entire computer session.
Resumo:
This chapter is a tutorial that teaches you how to design extended finite state machine (EFSM) test models for a system that you want to test. EFSM models are more powerful and expressive than simple finite state machine (FSM) models, and are one of the most commonly used styles of models for model-based testing, especially for embedded systems. There are many languages and notations in use for writing EFSM models, but in this tutorial we write our EFSM models in the familiar Java programming language. To generate tests from these EFSM models we use ModelJUnit, which is an open-source tool that supports several stochastic test generation algorithms, and we also show how to write your own model-based testing tool. We show how EFSM models can be used for unit testing and system testing of embedded systems, and for offline testing as well as online testing.
Resumo:
The IEEE Subcommittee on the Application of Probability Methods (APM) published the IEEE Reliability Test System (RTS) [1] in 1979. This system provides a consistent and generally acceptable set of data that can be used both in generation capacity and in composite system reliability evaluation [2,3]. The test system provides a basis for the comparison of results obtained by different people using different methods. Prior to its publication, there was no general agreement on either the system or the data that should be used to demonstrate or test various techniques developed to conduct reliability studies. Development of reliability assessment techniques and programs are very dependent on the intent behind the development as the experience of one power utility with their system may be quite different from that of another utility. The development and the utilization of a reliability program are, therefore, greatly influenced by the experience of a utlity and the intent of the system manager, planner and designer conducting the reliability studies. The IEEE-RTS has proved to be extremely valuable in highlighting and comparing the capabilities (or incapabilities) of programs used in reliability studies, the differences in the perception of various power utilities and the differences in the solution techniques. The IEEE-RTS contains a reasonably large power network which can be difficult to use for initial studies in an educational environment.
Resumo:
The IEEE Reliability Test System (RTS) developed by the Application of Probability Method Subcommittee has been used to compare and test a wide range of generating capacity and composite system evaluation techniques and subsequent digital computer programs. A basic reliability test system is presented which has evolved from the reliability education and research programs conducted by the Power System Research Group at the University of Saskatchewan. The basic system data necessary for adequacy evaluation at the generation and composite generation and transmission system levels are presented together with the fundamental data required to conduct reliability-cost/reliability-worth evaluation
Resumo:
A set of basic reliability indices at the generation and composite generation and transmission levels for a small reliability test system are presented. The test system and the results presented have evolved from reliability research and teaching programs. The indices presented are for fundamental reliability applications which should be covered in a power system reliability teaching program. The RBTS test system and the basic indices provide a valuable reference for faculty and students engaged in reliability teaching and research
Resumo:
This paper reports a study that explored a new construct: ‘climate of fear’. We hypothesised that climate of fear would vary across work sites within organisations, but not across organisations. This is in contrast a to measures of organisational culture, which were expected to vary both within and across organisations. To test our hypotheses, we developed a new 13-item measure of perceived fear in organisations and tested it in 20 sites across two organisations (N ≡ 209). Culture variables measured were innovative leadership culture, and communication culture. Results were that climate of fear did vary across sites in both organisations, while differences across organisations were not significant, as we anticipated. Organisational culture, however, varied between the organisations, and within one of the organisations. The climate of fear scale exhibited acceptable psychometric properties
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Security of RFID authentication protocols has received considerable interest recently. However, an important aspect of such protocols that has not received as much attention is the efficiency of their communication. In this paper we investigate the efficiency benefits of pre-computation for time-constrained applications in small to medium RFID networks. We also outline a protocol utilizing this mechanism in order to demonstrate the benefits and drawbacks of using thisapproach. The proposed protocol shows promising results as it is able to offer the security of untraceableprotocols whilst only requiring the time comparable to that of more efficient but traceable protocols.
Resumo:
We introduce a lightweight biometric solution for user authentication over networks using online handwritten signatures. The algorithm proposed is based on a modified Hausdorff distance and has favorable characteristics such as low computational cost and minimal training requirements. Furthermore, we investigate an information theoretic model for capacity and performance analysis for biometric authentication which brings additional theoretical insights to the problem. A fully functional proof-of-concept prototype that relies on commonly available off-the-shelf hardware is developed as a client-server system that supports Web services. Initial experimental results show that the algorithm performs well despite its low computational requirements and is resilient against over-the-shoulder attacks.
Resumo:
PURPOSE: To test the reliability of Timed Up and Go Tests (TUGTs) in cardiac rehabilitation (CR) and compare TUGTs to the 6-Minute Walk Test (6MWT) for outcome measurement. METHODS: Sixty-one of 154 consecutive community-based CR patients were prospectively recruited. Subjects undertook repeated TUGTs and 6MWTs at the start of CR (start-CR), postdischarge from CR (post-CR), and 6 months postdischarge from CR (6 months post-CR). The main outcome measurements were TUGT time (TUGTT) and 6MWT distance (6MWD). RESULTS: Mean (SD) TUGTT1 and TUGTT2 at the 3 assessments were 6.29 (1.30) and 5.94 (1.20); 5.81 (1.22) and 5.53 (1.09); and 5.39 (1.60) and 5.01 (1.28) seconds, respectively. A reduction in TUGTT occurred between each outcome point (P ≤ .002). Repeated TUGTTs were strongly correlated at each assessment, intraclass correlation (95% CI) = 0.85 (0.76–0.91), 0.84 (0.73–0.91), and 0.90 (0.83–0.94), despite a reduction between TUGTT1 and TUGTT2 of 5%, 5%, and 7%, respectively (P ≤ .006). Relative decreases in TUGTT1 (TUGTT2) occurred from start-CR to post-CR and from start-CR to 6 months post-CR of −7.5% (−6.9%) and −14.2% (−15.5%), respectively, while relative increases in 6MWD1 (6MWD2) occurred, 5.1% (7.2%) and 8.4% (10.2%), respectively (P < .001 in all cases). Pearson correlation coefficients for 6MWD1 to TUGTT1 and TUGTT2 across all times were −0.60 and −0.68 (P < .001) and the intraclass correlations (95% CI) for the speeds derived from averaged 6MWDs and TUGTTs were 0.65 (0.54, 0.73) (P < .001). CONCLUSIONS: Similar relative changes occurred for the TUGT and the 6MWT in CR. A significant correlation between the TUGTT and 6MWD was demonstrated, and we suggest that the TUGT may provide a related or a supplementary measurement of functional capacity in CR.
Resumo:
Population-wide associations between loci due to linkage disequilibrium can be used to map quantitative trait loci (QTL) with high resolution. However, spurious associations between markers and QTL can also arise as a consequence of population stratification. Statistical methods that cannot differentiate between loci associations due to linkage disequilibria from those caused in other ways can render false-positive results. The transmission-disequilibrium test (TDT) is a robust test for detecting QTL. The TDT exploits within-family associations that are not affected by population stratification. However, some TDTs are formulated in a rigid-form, with reduced potential applications. In this study we generalize TDT using mixed linear models to allow greater statistical flexibility. Allelic effects are estimated with two independent parameters: one exploiting the robust within-family information and the other the potentially biased between-family information. A significant difference between these two parameters can be used as evidence for spurious association. This methodology was then used to test the effects of the fourth melanocortin receptor (MC4R) on production traits in the pig. The new analyses supported the previously reported results; i.e., the studied polymorphism is either causal of in very strong linkage disequilibrium with the causal mutation, and provided no evidence for spurious association.