992 resultados para auditory attention detection
Resumo:
El uso de técnicas para la monitorización del movimiento humano generalmente permite a los investigadores analizar la cinemática y especialmente las capacidades motoras en aquellas actividades de la vida cotidiana que persiguen un objetivo concreto como pueden ser la preparación de bebidas y comida, e incluso en tareas de aseo. Adicionalmente, la evaluación del movimiento y el comportamiento humanos en el campo de la rehabilitación cognitiva es esencial para profundizar en las dificultades que algunas personas encuentran en la ejecución de actividades diarias después de accidentes cerebro-vasculares. Estas dificultades están principalmente asociadas a la realización de pasos secuenciales y al reconocimiento del uso de herramientas y objetos. La interpretación de los datos sobre la actitud de este tipo de pacientes para reconocer y determinar el nivel de éxito en la ejecución de las acciones, y para ampliar el conocimiento en las enfermedades cerebrales, sus consecuencias y severidad, depende totalmente de los dispositivos usados para la captura de esos datos y de la calidad de los mismos. Más aún, existe una necesidad real de mejorar las técnicas actuales de rehabilitación cognitiva contribuyendo al diseño de sistemas automáticos para crear una especie de terapeuta virtual que asegure una vida más independiente de estos pacientes y reduzca la carga de trabajo de los terapeutas. Con este objetivo, el uso de sensores y dispositivos para obtener datos en tiempo real de la ejecución y estado de la tarea de rehabilitación es esencial para también contribuir al diseño y entrenamiento de futuros algoritmos que pudieran reconocer errores automáticamente para informar al paciente acerca de ellos mediante distintos tipos de pistas como pueden ser imágenes, mensajes auditivos o incluso videos. La tecnología y soluciones existentes en este campo no ofrecen una manera totalmente robusta y efectiva para obtener datos en tiempo real, por un lado, porque pueden influir en el movimiento del propio paciente en caso de las plataformas basadas en el uso de marcadores que necesitan sensores pegados en la piel; y por otro lado, debido a la complejidad o alto coste de implantación lo que hace difícil pensar en la idea de instalar un sistema en el hospital o incluso en la casa del paciente. Esta tesis presenta la investigación realizada en el campo de la monitorización del movimiento de pacientes para proporcionar un paso adelante en términos de detección, seguimiento y reconocimiento del comportamiento de manos, gestos y cara mediante una manera no invasiva la cual puede mejorar la técnicas actuales de rehabilitación cognitiva para la adquisición en tiempo real de datos sobre el comportamiento del paciente y la ejecución de la tarea. Para entender la importancia del marco de esta tesis, inicialmente se presenta un resumen de las principales enfermedades cognitivas y se introducen las consecuencias que tienen en la ejecución de tareas de la vida diaria. Más aún, se investiga sobre las metodologías actuales de rehabilitación cognitiva. Teniendo en cuenta que las manos son la principal parte del cuerpo para la ejecución de tareas manuales de la vida cotidiana, también se resumen las tecnologías existentes para la captura de movimiento de manos. Una de las principales contribuciones de esta tesis está relacionada con el diseño y evaluación de una solución no invasiva para detectar y seguir las manos durante la ejecución de tareas manuales de la vida cotidiana que a su vez involucran la manipulación de objetos. Esta solución la cual no necesita marcadores adicionales y está basada en una cámara de profundidad de bajo coste, es robusta, precisa y fácil de instalar. Otra contribución presentada se centra en el reconocimiento de gestos para detectar el agarre de objetos basado en un sensor infrarrojo de última generación, y también complementado con una cámara de profundidad. Esta nueva técnica, y también no invasiva, sincroniza ambos sensores para seguir objetos específicos además de reconocer eventos concretos relacionados con tareas de aseo. Más aún, se realiza una evaluación preliminar del reconocimiento de expresiones faciales para analizar si es adecuado para el reconocimiento del estado de ánimo durante la tarea. Por su parte, todos los componentes y algoritmos desarrollados son integrados en un prototipo simple para ser usado como plataforma de monitorización. Se realiza una evaluación técnica del funcionamiento de cada dispositivo para analizar si es adecuada para adquirir datos en tiempo real durante la ejecución de tareas cotidianas reales. Finalmente, se estudia la interacción con pacientes reales para obtener información del nivel de usabilidad del prototipo. Dicha información es esencial y útil para considerar una rehabilitación cognitiva basada en la idea de instalación del sistema en la propia casa del paciente al igual que en el hospital correspondiente. ABSTRACT The use of human motion monitoring techniques usually let researchers to analyse kinematics, especially in motor strategies for goal-oriented activities of daily living, such as the preparation of drinks and food, and even grooming tasks. Additionally, the evaluation of human movements and behaviour in the field of cognitive rehabilitation is essential to deep into the difficulties some people find in common activities after stroke. This difficulties are mainly associated with sequence actions and the recognition of tools usage. The interpretation of attitude data of this kind of patients in order to recognize and determine the level of success of the execution of actions, and to broaden the knowledge in brain diseases, consequences and severity, depends totally on the devices used for the capture of that data and the quality of it. Moreover, there is a real need of improving the current cognitive rehabilitation techniques by contributing to the design of automatic systems to create a kind of virtual therapist for the improvement of the independent life of these stroke patients and to reduce the workload of the occupational therapists currently in charge of them. For this purpose, the use of sensors and devices to obtain real time data of the execution and state of the rehabilitation task is essential to also contribute to the design and training of future smart algorithms which may recognise errors to automatically provide multimodal feedback through different types of cues such as still images, auditory messages or even videos. The technology and solutions currently adopted in the field don't offer a totally robust and effective way for obtaining real time data, on the one hand, because they may influence the patient's movement in case of marker-based platforms which need sensors attached to the skin; and on the other hand, because of the complexity or high cost of implementation, which make difficult the idea of installing a system at the hospital or even patient's home. This thesis presents the research done in the field of user monitoring to provide a step forward in terms of detection, tracking and recognition of hand movements, gestures and face via a non-invasive way which could improve current techniques for cognitive rehabilitation for real time data acquisition of patient's behaviour and execution of the task. In order to understand the importance of the scope of the thesis, initially, a summary of the main cognitive diseases that require for rehabilitation and an introduction of the consequences on the execution of daily tasks are presented. Moreover, research is done about the actual methodology to provide cognitive rehabilitation. Considering that the main body members involved in the completion of a handmade daily task are the hands, the current technologies for human hands movements capture are also highlighted. One of the main contributions of this thesis is related to the design and evaluation of a non-invasive approach to detect and track user's hands during the execution of handmade activities of daily living which involve the manipulation of objects. This approach does not need the inclusion of any additional markers. In addition, it is only based on a low-cost depth camera, it is robust, accurate and easy to install. Another contribution presented is focused on the hand gesture recognition for detecting object grasping based on a brand new infrared sensor, and also complemented with a depth camera. This new, and also non-invasive, solution which synchronizes both sensors to track specific tools as well as recognize specific events related to grooming is evaluated. Moreover, a preliminary assessment of the recognition of facial expressions is carried out to analyse if it is adequate for recognizing mood during the execution of task. Meanwhile, all the corresponding hardware and software developed are integrated in a simple prototype with the purpose of being used as a platform for monitoring the execution of the rehabilitation task. Technical evaluation of the performance of each device is carried out in order to analyze its suitability to acquire real time data during the execution of real daily tasks. Finally, a kind of healthcare evaluation is also presented to obtain feedback about the usability of the system proposed paying special attention to the interaction with real users and stroke patients. This feedback is quite useful to consider the idea of a home-based cognitive rehabilitation as well as a possible hospital installation of the prototype.
Resumo:
La medida de calidad de vídeo sigue siendo necesaria para definir los criterios que caracterizan una señal que cumpla los requisitos de visionado impuestos por el usuario. Las nuevas tecnologías, como el vídeo 3D estereoscópico o formatos más allá de la alta definición, imponen nuevos criterios que deben ser analizadas para obtener la mayor satisfacción posible del usuario. Entre los problemas detectados durante el desarrollo de esta tesis doctoral se han determinado fenómenos que afectan a distintas fases de la cadena de producción audiovisual y tipo de contenido variado. En primer lugar, el proceso de generación de contenidos debe encontrarse controlado mediante parámetros que eviten que se produzca el disconfort visual y, consecuentemente, fatiga visual, especialmente en lo relativo a contenidos de 3D estereoscópico, tanto de animación como de acción real. Por otro lado, la medida de calidad relativa a la fase de compresión de vídeo emplea métricas que en ocasiones no se encuentran adaptadas a la percepción del usuario. El empleo de modelos psicovisuales y diagramas de atención visual permitirían ponderar las áreas de la imagen de manera que se preste mayor importancia a los píxeles que el usuario enfocará con mayor probabilidad. Estos dos bloques se relacionan a través de la definición del término saliencia. Saliencia es la capacidad del sistema visual para caracterizar una imagen visualizada ponderando las áreas que más atractivas resultan al ojo humano. La saliencia en generación de contenidos estereoscópicos se refiere principalmente a la profundidad simulada mediante la ilusión óptica, medida en términos de distancia del objeto virtual al ojo humano. Sin embargo, en vídeo bidimensional, la saliencia no se basa en la profundidad, sino en otros elementos adicionales, como el movimiento, el nivel de detalle, la posición de los píxeles o la aparición de caras, que serán los factores básicos que compondrán el modelo de atención visual desarrollado. Con el objetivo de detectar las características de una secuencia de vídeo estereoscópico que, con mayor probabilidad, pueden generar disconfort visual, se consultó la extensa literatura relativa a este tema y se realizaron unas pruebas subjetivas preliminares con usuarios. De esta forma, se llegó a la conclusión de que se producía disconfort en los casos en que se producía un cambio abrupto en la distribución de profundidades simuladas de la imagen, aparte de otras degradaciones como la denominada “violación de ventana”. A través de nuevas pruebas subjetivas centradas en analizar estos efectos con diferentes distribuciones de profundidades, se trataron de concretar los parámetros que definían esta imagen. Los resultados de las pruebas demuestran que los cambios abruptos en imágenes se producen en entornos con movimientos y disparidades negativas elevadas que producen interferencias en los procesos de acomodación y vergencia del ojo humano, así como una necesidad en el aumento de los tiempos de enfoque del cristalino. En la mejora de las métricas de calidad a través de modelos que se adaptan al sistema visual humano, se realizaron también pruebas subjetivas que ayudaron a determinar la importancia de cada uno de los factores a la hora de enmascarar una determinada degradación. Los resultados demuestran una ligera mejora en los resultados obtenidos al aplicar máscaras de ponderación y atención visual, los cuales aproximan los parámetros de calidad objetiva a la respuesta del ojo humano. ABSTRACT Video quality assessment is still a necessary tool for defining the criteria to characterize a signal with the viewing requirements imposed by the final user. New technologies, such as 3D stereoscopic video and formats of HD and beyond HD oblige to develop new analysis of video features for obtaining the highest user’s satisfaction. Among the problems detected during the process of this doctoral thesis, it has been determined that some phenomena affect to different phases in the audiovisual production chain, apart from the type of content. On first instance, the generation of contents process should be enough controlled through parameters that avoid the occurrence of visual discomfort in observer’s eye, and consequently, visual fatigue. It is especially necessary controlling sequences of stereoscopic 3D, with both animation and live-action contents. On the other hand, video quality assessment, related to compression processes, should be improved because some objective metrics are adapted to user’s perception. The use of psychovisual models and visual attention diagrams allow the weighting of image regions of interest, giving more importance to the areas which the user will focus most probably. These two work fields are related together through the definition of the term saliency. Saliency is the capacity of human visual system for characterizing an image, highlighting the areas which result more attractive to the human eye. Saliency in generation of 3DTV contents refers mainly to the simulated depth of the optic illusion, i.e. the distance from the virtual object to the human eye. On the other hand, saliency is not based on virtual depth, but on other features, such as motion, level of detail, position of pixels in the frame or face detection, which are the basic features that are part of the developed visual attention model, as demonstrated with tests. Extensive literature involving visual comfort assessment was looked up, and the development of new preliminary subjective assessment with users was performed, in order to detect the features that increase the probability of discomfort to occur. With this methodology, the conclusions drawn confirmed that one common source of visual discomfort was when an abrupt change of disparity happened in video transitions, apart from other degradations, such as window violation. New quality assessment was performed to quantify the distribution of disparities over different sequences. The results confirmed that abrupt changes in negative parallax environment produce accommodation-vergence mismatches derived from the increasing time for human crystalline to focus the virtual objects. On the other side, for developing metrics that adapt to human visual system, additional subjective tests were developed to determine the importance of each factor, which masks a concrete distortion. Results demonstrated slight improvement after applying visual attention to objective metrics. This process of weighing pixels approximates the quality results to human eye’s response.
Resumo:
El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.
Resumo:
Coincidence detection is important for functions as diverse as Hebbian learning, binaural localization, and visual attention. We show here that extremely precise coincidence detection is a natural consequence of the normal function of rectifying electrical synapses. Such synapses open to bidirectional current flow when presynaptic cells depolarize relative to their postsynaptic targets and remain open until well after completion of presynaptic spikes. When multiple input neurons fire simultaneously, the synaptic currents sum effectively and produce a large excitatory postsynaptic potential. However, when some inputs are delayed relative to the rest, their contributions are reduced because the early excitatory postsynaptic potential retards the opening of additional voltage-sensitive synapses, and the late synaptic currents are shunted by already opened junctions. These mechanisms account for the ability of the lateral giant neurons of crayfish to sum synchronous inputs, but not inputs separated by only 100 μsec. This coincidence detection enables crayfish to produce reflex escape responses only to very abrupt mechanical stimuli. In light of recent evidence that electrical synapses are common in the mammalian central nervous system, the mechanisms of coincidence detection described here may be widely used in many systems.
Resumo:
During metamorphosis, ranid frogs shift from a purely aquatic to a partly terrestrial lifestyle. The central auditory system undergoes functional and neuroanatomical reorganization in parallel with the development of new sound conduction pathways adapted for the detection of airborne sounds. Neural responses to sounds can be recorded from the auditory midbrain of tadpoles shortly after hatching, with higher rates of synchronous neural activity and lower sharpness of tuning than observed in postmetamorphic animals. Shortly before the onset of metamorphic climax, there is a brief “deaf” period during which no auditory activity can be evoked from the midbrain, and a loss of connectivity is observed between medullary and midbrain auditory nuclei. During the final stages of metamorphic development, auditory function and neural connectivity are restored. The acoustic communication system of the adult frog emerges from these periods of anatomical and physiological plasticity during metamorphosis.
Resumo:
Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In this paper, we describe an algorithm that automatically detects and labels peaks I - VII of the normal, suprathreshold auditory brainstem response (ABR). The algorithm proceeds in three stages, with the option of a fourth: ( 1) all candidate peaks and troughs in the ABR waveform are identified using zero crossings of the first derivative, ( 2) peaks I - VII are identified from these candidate peaks based on their latency and morphology, ( 3) if required, peaks II and IV are identified as points of inflection using zero crossings of the second derivative and ( 4) interpeak troughs are identified before peak latencies and amplitudes are measured. The performance of the algorithm was estimated on a set of 240 normal ABR waveforms recorded using a stimulus intensity of 90 dBnHL. When compared to an expert audiologist, the algorithm correctly identified the major ABR peaks ( I, III and V) in 96 - 98% of the waveforms and the minor ABR peaks ( II, IV, VI and VII) in 45 - 83% of waveforms. Whilst peak II was correctly identified in only 83% and peak IV in 77% of waveforms, it was shown that 5% of the peak II identifications and 31% of the peak IV identifications came as a direct result of allowing these peaks to be found as points of inflection. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
In 3 experiments, the authors examined the role of memory for prior instances for making relative judgments in conflict detection. Participants saw pairs of aircraft either repeatedly conflict with each other or pass safely before being tested on new aircraft pairs, which varied in similarity to the training pairs. Performance was influenced by the similarity between aircraft pairs. Detection time was faster when a conflict pair resembled a pair that had repeatedly conflicted. Detection time was slower, and participants missed conflicts, when a conflict pair resembled a pair that had repeatedly passed safely. The findings identify aircraft features that are used as inputs into the memory decision process and provide an indication of the processes involved in the use of memory for prior instances to make relative judgments.
Resumo:
Previous research in visual search indicates that animal fear-relevant deviants, snakes/spiders, are found faster among non fear-relevant backgrounds, flowers/mushrooms, than vice versa. Moreover, deviant absence was indicated faster among snakes/spiders and detection time for flower/mushroom deviants, but not for snake/spider deviants, increased in larger arrays. The current research indicates that the latter 2 results do not reflect on fear-relevance, but are found only with flower/mushroom controls. These findings may reflect on factors such as background homogeneity, deviant homogeneity, or background-deviant similarity. The current research removes contradictions between previous studies that used animal and social fear-relevant stimuli and indicates that apparent search advantages for fear-relevant deviants seem likely to reflect on delayed attentional disengagement from fear-relevance on control trials.
Resumo:
PURPOSE. The driving environment is becoming increasingly complex, including both visual and auditory distractions within the in- vehicle and external driving environments. This study was designed to investigate the effect of visual and auditory distractions on a performance measure that has been shown to be related to driving safety, the useful field of view. METHODS. A laboratory study recorded the useful field of view in 28 young visually normal adults (mean 22.6 +/- 2.2 years). The useful field of view was measured in the presence and absence of visual distracters (of the same angular subtense as the target) and with three levels of auditory distraction (none, listening only, listening and responding). RESULTS. Central errors increased significantly (P < 0.05) in the presence of auditory but not visual distracters, while peripheral errors increased in the presence of both visual and auditory distracters. Peripheral errors increased with eccentricity and were greatest in the inferior region in the presence of distracters. CONCLUSIONS. Visual and auditory distracters reduce the extent of the useful field of view, and these effects are exacerbated in inferior and peripheral locations. This result has significant ramifications for road safety in an increasingly complex in-vehicle and driving environment.
Resumo:
Research on sensory processing or the way animals see, hear, smell, taste, feel and electrically and magnetically sense their environment has advanced a great deal over the last fifteen years. This book discusses the most important themes that have emerged from recent research and provides a summary of likely future directions. The book starts with two sections on the detection of sensory signals over long and short ranges by aquatic animals, covering the topics of navigation, communication, and finding food and other localized sources. The next section, the co-evolution of signal and sense, deals with how animals decide whether the source is prey, predator or mate by utilizing receptors that have evolved to take full advantage of the acoustical properties of the signal. Organisms living in the deep-sea environment have also received a lot of recent attention, so the next section deals with visual adaptations to limited light environments where sunlight is replaced by bioluminescence and the visual system has undergone changes to optimize light capture and sensitivity. The last section on central co-ordination of sensory systems covers how signals are processed and filtered for use by the animal. This book will be essential reading for all researchers and graduate students interested in sensory systems.
Resumo:
Capacity limits in visual attention have traditionally been studied using static arrays of elements from which an observer must detect a target defined by a certain visual feature or combination of features. In the current study we use this visual search paradigm, with accuracy as the dependent variable, to examine attentional capacity limits for different visual features undergoing change over time. In Experiment 1, detectability of a single changing target was measured under conditions where the type of change (size, speed, colour), the magnitude of change, the set size and homogeneity of the unchanging distractors were all systematically varied. Psychometric function slopes were calculated for different experimental conditions and ‘change thresholds’extracted from these slopes were used in Experiment 2, in which multiple supra-threshold changes were made, simultaneously, either to a single or to two or three different stimulus elements. These experiments give an objective psychometric paradigm for measuring changes in visual features over time. Results favour object-based accounts of visual attention, and show consistent differences in the allocation of attentional capacity to different perceptual dimensions.