950 resultados para areal radar rainfall
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.
Resumo:
This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.
Resumo:
Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.
Resumo:
In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6-38 degrees N and 68-98 degrees E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1 degrees x 0.1 degrees. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971-2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change - Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046-2065) and 2090 (i.e. 2081-2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (HAS) rainfall compared to the current climate (1971-2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively.
Resumo:
An analysis of the retrospective predictions by seven coupled ocean atmosphere models from major forecasting centres of Europe and USA, aimed at assessing their ability in predicting the interannual variation of the Indian summer monsoon rainfall (ISMR), particularly the extremes (i.e. droughts and excess rainfall seasons) is presented in this article. On the whole, the skill in prediction of extremes is not bad since most of the models are able to predict the sign of the ISMR anomaly for a majority of the extremes. There is a remarkable coherence between the models in successes and failures of the predictions, with all the models generating loud false alarms for the normal monsoon season of 1997 and the excess monsoon season of 1983. It is well known that the El Nino and Southern Oscillation (ENSO) and the Equatorial Indian Ocean Oscillation (EQUINOO) play an important role in the interannual variation of ISMR and particularly the extremes. The prediction of the phases of these modes and their link with the monsoon has also been assessed. It is found that models are able to simulate ENSO-monsoon link realistically, whereas the EQUINOO-ISMR link is simulated realistically by only one model the ECMWF model. Furthermore, it is found that in most models this link is opposite to the observed, with the predicted ISMR being negatively (instead of positively) correlated with the rainfall over the western equatorial Indian Ocean and positively (instead of negatively) correlated with the rainfall over the eastern equatorial Indian Ocean. Analysis of the seasons for which the predictions of almost all the models have large errors has suggested the facets of ENSO and EQUINOO and the links with the monsoon that need to be improved for improving monsoon predictions by these models.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.