800 resultados para arbre de duplication
Resumo:
Plant-specific polyketide synthase genes constitute a gene superfamily, including universal chalcone synthase [CHS; malonyl-CoA:4-coumaroyl-CoA malonyltransferase (cyclizing) (EC 2.3.1.74)] genes, sporadically distributed stilbene synthase (SS) genes, and atypical, as-yet-uncharacterized CHS-like genes. We have recently isolated from Gerbera hybrida (Asteraceae) an unusual CHS-like gene, GCHS2, which codes for an enzyme with structural and enzymatic properties as well as ontogenetic distribution distinct from both CHS and SS. Here, we show that the GCHS2-like function is encoded in the Gerbera genome by a family of at least three transcriptionally active genes. Conservation within the GCHS2 family was exploited with selective PCR to study the occurrence of GCHS2-like genes in other Asteraceae. Parsimony analysis of the amplified sequences together with CHS-like genes isolated from other taxa of angiosperm subclass Asteridae suggests that GCHS2 has evolved from CHS via a gene duplication event that occurred before the diversification of the Asteraceae. Enzyme activity analysis of proteins produced in vitro indicates that the GCHS2 reaction is a non-SS variant of the CHS reaction, with both different substrate specificity (to benzoyl-CoA) and a truncated catalytic profile. Together with the recent results of Durbin et al. [Durbin, M. L., Learn, G. H., Jr., Huttley, G. A. & Clegg, M. T. (1995) Proc. Natl. Acad. Sci. USA 92, 3338-3342], our study confirms a gene duplication-based model that explains how various related functions have arisen from CHS during plant evolution.
Resumo:
Proteasomes are the multi-subunit protease thought to play a key role in the generation of peptides presented by major histocompatibility complex (MHC) class I molecules. When cells are stimulated with interferon gamma, two MHC-encoded subunits, low molecular mass polypeptide (LMP) 2 and LMP7, and the MECL1 subunit encoded outside the MHC are incorporated into the proteasomal complex, presumably by displacing the housekeeping subunits designated Y, X, and Z, respectively. These changes in the subunit composition appear to facilitate class I-mediated antigen presentation, presumably by altering the cleavage specificities of the proteasome. Here we show that the mouse gene encoding the Z subunit (Psmb7) maps to the paracentromeric region of chromosome 2. Inspection of the mouse loci adjacent to the Psmb7 locus provides evidence that the paracentromeric region of chromosome 2 and the MHC region on chromosome 17 most likely arose as a result of a duplication that took place at an early stage of vertebrate evolution. The traces of this duplication are also evident in the homologous human chromosome regions (6p21.3 and 9q33-q34). These observations have implications in understanding the genomic organization of the present-day MHC and offer insights into the origin of the MHC.
Resumo:
Plakoglobin interacts with both classical and desmosomal cadherins. It is closely related to Drosophila aramadillo (arm) gene product; arm acts in the wingless (wg)-signaling pathway to establish segment polarity. In Xenopus, homologs of wg--i.e., wnts, can produce anterior axis duplications by inducing dorsal mesoderm. Studies in Drosophila suggest that wnt acts by increasing the level of cytoplasmic armadillo protein (arm). To test whether simply increasing the level of plakoglobin mimics the effects of exogenous wnts in Xenopus, we injected fertilized eggs with RNA encoding an epitope-tagged form of plakoglobin; this induced both early radial gastrulation and anterior axis duplication. Exogenous plakoglobin accumulates in the nuclei of embryonic cells. Plakoglobin binds to the tail domain of the desmosomal cadherin desmoglein 1. When RNA encoding the tail domain of desmoglein was coinjected with plakoglobin RNA, both the dorsalizing effect and nuclear accumulation of plakoglobin were suppressed. Mutational analysis indicates that the central arm repeat region of plakoglobin is sufficient to induce axis duplication and that this polypeptide accumulates in the nuclei of embryonic cells. These data show that increased plakoglobin levels can, by themselves, generate the intracellular signals involved in the specification of dorsal mesoderm.
Resumo:
For almost a century, events relating to the evolutionary origin of endosperm, a unique embryo-nourishing tissue that is essential to the reproductive process in flowering plants, have remained a mystery. Integration of recent advances in phylogenetic reconstruction, comparative reproductive biology, and genetic theory can be used to elucidate the evolutionary events and forces associated with the establishment of endosperm. Endosperm is shown to be derived from one of two embryos formed during a rudimentary process of "double fertilization" that evolved in the ancestors of angiosperms. Acquisition of embryo-nourishing behavior (with accompanying loss of individual fitness) by this supernumerary fertilization product was dependent upon compensatory gains in the inclusive fitness of related embryos. The result of the loss of individual fitness by one of the two original products of double fertilization was the establishment of endosperm, a highly modified embryo/organism that reproduces cryptically through behavior that enhances the fitness of its associated embryo within a seed. Finally, although triploid endosperm remains a synapomorphy of angiosperms, inclusive fitness analysis demonstrates that the embryo-nourishing properties of endosperm initially evolved in a diploid condition.
Resumo:
The squamous cell carcinoma antigen (SCCA) is a member of the ovalbumin family of serine proteinase inhibitors (serpins). A neutral form of the protein is found in normal and some malignant squamous cells, whereas an acidic form is detected exclusively in tumor cells and in the circulation of patients with squamous cell tumors. In this report, we describe the cloning of the SCCA gene from normal genomic DNA. Surprisingly, two genes were found. They were tandemly arrayed and flanked by two other closely related serpins, plasminogen activator inhibitor type 2 (PAI2) and maspin at 18q21.3. The genomic structure of the two genes, SCCA1 and SCCA2, was highly conserved. The predicted amino acid sequences were 92% identical and suggested that the neutral form of the protein was encoded by SCCA1 and the acidic form was encoded by SCCA2. Further characterization of the region should determine whether the differential expression of the SCCA genes plays a causal role in development of more aggressive squamous cell carcinomas.
Resumo:
Effectively addressing the issue of duplication in Europe’s defence systems will require a considerable amount of political will and, more importantly, a far-sighted vision of the way to go. Difficult choices will have to be made, and EU member states will have to invest in a complex exercise of coordination of defence and industrial policies and planning. However, the efficient management of EU defence budgets and the maintenance of a viable industrial base demand such efforts. After all, what is at stake is the EU’s ability to guarantee its own security. The author makes a series of proposals to address this issue ahead of the European Council of December 2013, which will be devoted to matters of security and defence.
Resumo:
Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.
Resumo:
Shipping list no.: 96-0230-P.
Resumo:
Lettered on cover: Problems in geometry. Beman and Smith. 1922.
Resumo:
Vita.
Resumo:
Mode of access: Internet.
Resumo:
"December 1972."
Resumo:
Written, in part, by P.-J. Buc'hoz. After his death, the publisher completed the treatise through recourse to the writings of others.
Resumo:
Stafleu and Cowan (2nd ed.)
Resumo:
Mode of access: Internet.