944 resultados para antibiotic treatment


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nosocomial infections in patients requiring renal replacement therapy have a high impact on morbidity and mortality. The most dangerous complication is bloodstream infection (BSI) associated with the vascular access, with a low BSI risk in arteriovenous fistulas or grafts and a comparatively high risk in central venous catheters. The single most important measure for preventing BSI is therefore the reduction of catheter use by means of early fistula formation. As this is not always feasible, prevention should focus on educational efforts, hand hygiene, surveillance of dialysis-associated events, and specific measures at and after the insertion of catheters. Core measures at the time of insertion include choosing the optimal site of insertion, the use of maximum sterile barrier precautions, adequate skin antisepsis, and the choice of catheter type; after insertion, access care needs to ensure hub disinfection and regular dressing changes. The application of antimicrobial locks is reserved for special situations. Evidence suggests that bundling a selection of the aforementioned measures can significantly reduce infection rates. The diagnosis of central line-associated BSI (CLABSI) is based on clinical signs and microbiological findings in blood cultures ideally drawn both peripherally and from the catheter. The prompt installation of empiric antibiotic treatment covering the most commonly encountered organisms is key regarding CLABSI treatment. Catheter removal is recommended in complicated cases or if cultures yield Staphylococcus aureus, enterococci, Pseudomonas or fungi. In other cases, guide wire exchange or catheter salvage strategies with antibiotic lock solutions may be acceptable alternatives.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND To systematically assess the literature published on the clinical impact of Influenza A(H1N1)pdm09 on cystic fibrosis (CF) patients. METHODS An online search in PUBMED database was conducted. Original articles on CF patients with Influenza A(H1N1)pdm09 infection were included. We analyzed incidence, symptoms, clinical course and treatment. RESULTS Four surveys with a total of 202 CF patients infected by Influenza A(H1N1)pdm09 were included. The meta-analysis showed that hospitalisation rates were higher in CF patients compared to the general population. While general disease symptoms were comparable, the clinical course was more severe and case fatality rate (CFR) was higher in CF patients compared to asthmatics and the general population. CONCLUSIONS Evidence so far suggests that CF patients infected with Influenza A(H1N1)pdm09 show increased morbidity and a higher CFR compared to patients with other chronic respiratory diseases and healthy controls. Particularly, CF patients with advanced stage disease seem to be more susceptible to severe lung disease. Accordingly, early antiviral and antibiotic treatment strategies are essential in CF patients. Preventive measures, including vaccination as well as hygiene measures during the influenza season, should be reinforced and improved in CF patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Pneumococcal meningitis (PM) is characterized by high mortality and morbidity including long-term neurofunctional deficits. Neuropathological correlates of these sequelae are apoptosis in the hippocampal dentate gyrus and necrosis in the cortex. Matrix metalloproteinases (MMPs) play a critical role in the pathophysiology of PM. RS-130830 (Ro-1130830, CTS-1027) is a potent partially selective inhibitor of MMPs of a second generation and has been evaluated in clinical trials as an anti-arthritis drug. It inhibits MMPs involved in acute inflammation but has low activity against MMP-1 (interstitial collagenase), MMP-7 (matrilysin) and tumour necrosis factor α converting enzyme (TACE). METHODS A well-established infant rat model of PM was used where live Streptococcus pneumoniae were injected intracisternally and antibiotic treatment with ceftriaxone was initiated 18 h post infection (hpi). Treatment with RS-130830 (75 mg/kg bis in die (bid) i.p., n = 40) was started at 3 hpi while control littermates received the vehicle (succinylated gelatine, n = 42). RESULTS Cortical necrosis was significantly attenuated in animals treated with RS-130830, while the extent of hippocampal apoptosis was not influenced. At 18 hpi, concentrations of interleukin (IL)-1β and IL-10 were significantly lower in the cerebrospinal fluid of treated animals compared to controls. RS-130830 significantly reduced weight loss and leukocyte counts in the cerebrospinal fluid of survivors of PM. CONCLUSION This study identifies MMP inhibition, specifically with RS-130830, as an efficient strategy to attenuate disease severity and cortical brain injury in PM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Staphylococcus aureus has long been recognized as a major pathogen. Methicillin-resistant strains of S. aureus (MRSA) and methicillin-resistant strains of S. epidermidis (MRSE) are among the most prevalent multiresistant pathogens worldwide, frequently causing nosocomial and community-acquired infections. METHODS In the present pilot study, we tested a polymerase chain reaction (PCR) method to quickly differentiate Staphylococci and identify the mecA gene in a clinical setting. RESULTS Compared to the conventional microbiology testing the real-time PCR assay had a higher detection rate for both S. aureus and coagulase-negative Staphylococci (CoNS; 55 vs. 32 for S. aureus and 63 vs. 24 for CoNS). Hands-on time preparing DNA, carrying out the PCR, and evaluating results was less than 5 h. CONCLUSIONS The assay is largely automated, easy to adapt, and has been shown to be rapid and reliable. Fast detection and differentiation of S. aureus, CoNS, and the mecA gene by means of this real-time PCR protocol may help expedite therapeutic decision-making and enable earlier adequate antibiotic treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND While multi-drug resistant organisms (MDRO) are a global phenomenon, there are significant regional differences in terms of prevalence. Traveling to countries with a high MDRO prevalence increases the risk of acquiring such an organism. In this study we determined risk factors for MDRO colonization among patients who returned from a healthcare system in a high-prevalence area (so-called transfer patients). Factors predicting colonization could serve as screening criteria to better target those at highest risk. METHODS This screening study included adult patients who had been exposed to a healthcare system abroad or in a high-prevalence region in Switzerland over the past six months and presented to our 950-bed tertiary care hospital between January 1, 2012 and December 31, 2013, a 24-month period. Laboratory screening tests focused on Gram-negative MDROs and methicillin-resistant Staphylococcus aureus (MRSA). RESULTS A total of 235 transfer patients were screened and analyzed, of which 43 (18 %) were positive for an MDRO. Most of them yielded Gram-negative bacteria (42; 98 %), with only a single screening revealing MRSA (2 %); three screenings showed a combination of Gram-negative bacteria and MRSA. For the risk factor analysis we focused on the 42 Gram-negative MDROs. Most of them were ESBL-producing Escherichia coli and Klebsiella pneumoniae while only two were carbapenemase producers. In univariate analysis, factors associated with screening positivity were hospitalization outside of Europe (p < 0.001), surgical procedure in a hospital abroad (p = 0.007), and - on admission to our hospital - active infection (p = 0.002), antibiotic treatment (p = 0.014) and presence of skin lesions (p = 0.001). Only hospitalization outside of Europe (Odds Ratio, OR 3.2 (95 % CI 1.5- 6.8)) and active infection on admission (OR 2.7 (95 % CI 1.07- 6.6)) remained as independent predictors of Gram-negative MDRO colonization. CONCLUSION Our data suggest that a large proportion of patients (i.e., 82 %) transferred to Switzerland from hospitals in high MDRO prevalence areas are unnecessarily screened for MDRO colonization. Basing our screening strategy on certain criteria (such as presence of skin lesions, active infection, antibiotic treatment, history of a surgical procedure abroad and hospitalization outside of Europe) promises to be a better targeted and more cost-effective strategy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent years have led to increasing interest and appreciation of the possible importance of single cell heterogeneity in various biological processes. One of the examples of phenotypic heterogeneity in bacterial populations is antibiotic tolerant persister cells. Such an antibiotic tolerance phenotype is of considerable clinical relevance since dormant bacteria can re-establish infections rapidly after the antibiotic treatment has been terminated. Up to now mechanisms for establishing the persistence phenomenon in bacteria have remained largely enigmatic. Persisters are cells considered to be in a dormant state with down regulated gene expression. Only recently small regulatory RNAs (sRNAs) have been appreciated as important regulators of gene expression in response to environmental stimuli and several theoretical studies have suggested a possible involvement of sRNAs in the mechanisms of regulated heterogeneity in bacteria. We have experimentally addressed this potential link between sRNAs and persistence/dormancy in E. coli as an example of heterogeneity. Beside classical sRNAs we are focusing also on sRNAs directly associating with and possibly regulating the ribosome, the central enzyme of gene expression. The persister and dormant cell specific sRNA profile is studied by the comparative analysis of sRNA profile changes of the whole bacterial population after antibiotic killing. From RNA-Seq data ~ 25 000 potentially stable RNA fragments were identified and initial analysis predicted ~300 of them to be dormant/persister cell specific. After further evaluation the most prominent dormant/persister cell specific sRNAs are functionally characterized and their potential role in the persistence/dormancy will be evaluated by applying genetic, molecular and biochemical tools. The potential results of this project will provide a better understanding on the molecular mechanism of bacterial persistence/dormancy and on the role of ribosome-bound sRNA molecules in fine-tuning gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RATIONALE Changes in the pulmonary microbiota are associated with progressive respiratory diseases including chronic obstructive pulmonary disease. Whether there is a causal relationship between these changes and disease progression remains unknown. OBJECTIVE To investigate the link between an altered microbiota and disease, we utilized a model of chronic lung inflammation in specific pathogen free (SPF) mice and mice depleted of microbiota by antibiotic treatment or devoid of a microbiota (axenic). METHODS Mice were challenged with LPS/elastase intranasally over 4 weeks, resulting in a chronically inflamed and damaged lung. The ensuing cellular infiltration, histological damage and decline in lung function were quantified. MEASUREMENTS AND MAIN RESULTS Similar to human disease, the composition of the pulmonary microbiota was altered in disease animals. We found that the microbiota richness and diversity were decreased in LPS/Elastase-treated mice, with an increased representation of the genera Pseudomonas, Lactobacillus and a reduction in Prevotella. Moreover, the microbiota was implicated in disease development as mice depleted of microbiota exhibited an improvement in lung function, reduction in airway inflammation, decrease in lymphoid neogenesis and auto-reactive antibody responses. The absence of microbial cues also markedly decreased the production of IL-17A, whilst intranasal transfer of fluid enriched with the pulmonary microbiota isolated from diseased mice enhanced IL-17A production in the lungs of antibiotic treated or axenic recipients. Finally, in mice harboring a microbiota, neutralizing IL-17A dampened inflammation and restored lung function. CONCLUSIONS Collectively, our data indicate that host-microbial cross-talk promotes inflammation and could underlie the chronicity of inflammatory lung diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Tuberculosis (TB) is a poverty-related disease that is associated with poor living conditions. We studied TB mortality and living conditions in Bern between 1856 and 1950. METHODS We analysed cause-specific mortality based on mortality registers certified by autopsies, and public health reports 1856 to 1950 from the city council of Bern. RESULTS TB mortality was higher in the Black Quarter (550 per 100,000) and in the city centre (327 per 100,000), compared to the outskirts (209 per 100,000 in 1911-1915). TB mortality correlated positively with the number of persons per room (r = 0.69, p = 0.026), the percentage of rooms without sunlight (r = 0.72, p = 0.020), and negatively with the number of windows per apartment (r = -0.79, p = 0.007). TB mortality decreased 10-fold from 330 per 100,000 in 1856 to 33 per 100,000 in 1950, as housing conditions improved, indoor crowding decreased, and open-air schools, sanatoria, systematic tuberculin skin testing of school children and chest radiography screening were introduced. CONCLUSIONS Improved living conditions and public health measures may have contributed to the massive decline of the TB epidemic in the city of Bern even before effective antibiotic treatment became finally available in the 1950s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Uncertainty about the presence of infection results in unnecessary and prolonged empiric antibiotic treatment of newborns at risk for early-onset sepsis (EOS). This study evaluates the impact of this uncertainty on the diversity in management. METHODS A web-based survey with questions addressing management of infection risk-adjusted scenarios was performed in Europe, North America, and Australia. Published national guidelines (n=5) were reviewed and compared to the results of the survey. RESULTS 439 Clinicians (68% were neonatologists) from 16 countries completed the survey. In the low-risk scenario, 29% would start antibiotic therapy and 26% would not, both groups without laboratory investigations; 45% would start if laboratory markers were abnormal. In the high-risk scenario, 99% would start antibiotic therapy. In the low-risk scenario, 89% would discontinue antibiotic therapy before 72 hours. In the high-risk scenario, 35% would discontinue therapy before 72 hours, 56% would continue therapy for five to seven days, and 9% for more than 7 days. Laboratory investigations were used in 31% of scenarios for the decision to start, and in 72% for the decision to discontinue antibiotic treatment. National guidelines differ considerably regarding the decision to start in low-risk and regarding the decision to continue therapy in higher risk situations. CONCLUSIONS There is a broad diversity of clinical practice in management of EOS and a lack of agreement between current guidelines. The results of the survey reflect the diversity of national guidelines. Prospective studies regarding management of neonates at risk of EOS with safety endpoints are needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) have been of great concern in hospitals due the difficulty in treating virulent, antibiotic resistant microorganisms in sensitive populations including children, the elderly, and immunocomprimised individuals. Since the late 1990's, MRSA infections have become a problem in the general community, and the strains of S. aureus that cause infections in the community are known to be genetically different than the hospital acquired strains. Community-acquired strains tend to be more virulent, affecting even relatively healthy individuals, and disease presentation tends to be more diverse than diseases observed in patients suffering from hospital-acquired strains. From the year 2000 to the present, there has been a significant increase in community-acquired infections in children, a population already particularly sensitive to S. aureus infection. Genotyping the strains of CA-MRSA circulating in the pediatric population is an important step in developing better antibiotic treatment strategies. Additionally, determining the carriage status of individuals in this population and comparing these data with strain genotypes will also be valuable in establishing prevention and control practices. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Pyogenic tonsillitis may often be observed in the general Western population. In severe cases, it may require antibiotic treatment or even hospitalization and often a prompt clinical response will be noted. Here we present an unusual case of progressive multiple organ failure including fulminant liver failure following acute tonsillitis initially mistaken for "classic" pyogenic (that is bacterial) tonsillitis. CASE PRESENTATION A 68-year-old previously healthy white man was referred with suspicion of pyogenic angina. After tonsillectomy, he developed acute liver failure and consecutive multiple organ failure including acute hemodynamic, pulmonary and dialysis-dependent renal failure. Immunohistopathological analysis of his tonsils and liver as well as serum polymerase chain reaction analyses revealed herpes simplex virus-2 to be the causative pathogen. Treatment included high-dose acyclovir and multiorgan supportive intensive care therapy. His final outcome was favorable. CONCLUSIONS Fulminant herpes simplex virus-2-induced multiple organ failure is rarely observed in the Western hemisphere and should be considered a potential diagnosis in patients with tonsillitis and multiple organ failure including acute liver failure. From a clinical perspective, it seems important to note that fulminant herpes simplex virus-2 infection may masquerade as "routine" bacterial severe sepsis/septic shock. This persevering condition should be diagnosed early and treated goal-oriented in order to gain control of this life-threatening condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptococcus pneumoniae is the main causal agent of pathologies that are increasingly resistant to antibiotic treatment. Clinical resistance of S. pneumoniae to β-lactam antibiotics is linked to multiple mutations of high molecular mass penicillin-binding proteins (H-PBPs), essential enzymes involved in the final steps of bacterial cell wall synthesis. H-PBPs from resistant bacteria have a reduced affinity for β-lactam and a decreased hydrolytic activity on substrate analogues. In S. pneumoniae, the gene coding for one of these H-PBPs, PBP2x, is located in the cell division cluster (DCW). We present here structural evidence linking multiple β-lactam resistance to amino acid substitutions in PBP2x within a buried cavity near the catalytic site that contains a structural water molecule. Site-directed mutation of amino acids in contact with this water molecule in the “sensitive” form of PBP2x produces mutants similar, in terms of β-lactam affinity and substrate hydrolysis, to altered PBP2x produced in resistant clinical isolates. A reverse mutation in a PBP2x variant from a clinically important resistant clone increases the acylation efficiency for β-lactams and substrate analogues. Furthermore, amino acid residues in contact with the structural water molecule are conserved in the equivalent H-PBPs of pathogenic Gram-positive cocci. We suggest that, probably via a local structural modification, the partial or complete loss of this water molecule reduces the acylation efficiency of PBP2x substrates to a point at which cell wall synthesis still occurs, but the sensitivity to therapeutic concentrations of β-lactam antibiotics is lost.