957 resultados para anti-giardial activity
Resumo:
The essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition. The essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography-mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice. The chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50=12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50=23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg(-1)), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg(-1) of EOOK), 95 ± 4% (100 mg kg(-1) of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50=31.90 mg ml(-1). This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time. The essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.
Resumo:
Croton celtidifolius Baill is a tree found in the Atlantic Forest South of Brazil, mainly in Santa Catarina. The bark and leaf infusions of this medicinal plant have been popularly used for the treatment of inflammatory diseases. The anti-aggregant activity of C. celtidifolius crude extract (CE) and the column chromatography (CC) isolated compounds flavonoids, catechin and gallocatechin were evaluated in human blood platelets. The platelet-rich plasma (PRP) was incubated with different concentrations of flavonóides (50 - 200 µg/mL) to be tested before platelet aggregation was induced by the agonists adenosine 5'diphosphate (ADP) and collagen. At 200 µg/mL the CE, catechin and gallocatechin markedly inhibited platelet aggregation with the aggregant agents. Using ATP production as an index of platelet secretory capacity, we observed a decreased production of ATP in platelets treated with flavonoids when stimulated by collagen. On the other hand, the flavonoids did not promote inhibitory effect on prothrombin time (PT), thromboplastin time (APTT) and thrombin time (TT). In conclusion, these observations suggest that C. celtidifolius is likely to exert an inhibitory action on platelets in vitro by suppressing secretion and platelet aggregation.
Resumo:
Salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their complexes [Zn(LASSBio-466) H(2)O](2) (1) and [Zn(HLASSBio-1064) Cl](2) (2) were evaluated in animal models of peripheral and central nociception, and acute inflammation. All studied compounds significantly inhibited acetic acid-induced writhing response. Upon coordination the anti-nociceptive activity was favored in the complex 1. H(2)LASSBio-466 inhibited only the first phase of the formalin test, while 1 was active in the second phase, like indomethacin, indicating its ability to inhibit nociception associated with the inflammatory response. Hence coordination to zinc(II) altered the pharmacological profile of H(2)LASSBio-466. H(2)LASSBio-1064 inhibited both phases but this effect was not improved by coordination. The studied compounds did not increase the latency of response in the hot plate model, indicating their lack of central anti-nociceptive activity. All compounds showed levels of inhibition of zymosan-induced peritonitis comparable or superior to indomethacin, indicating an expressive anti-inflammatory profile.
Resumo:
We describe herein an evaluation of the trypanocidal effect of eight piperamides (1-8) isolated from Piper tuberculatum bearing dihydropyridone, piperidine, and isobutyl moieties against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas` disease. Based on such results, three hydrogenated and two hydrolyzed derivatives (10-14) were prepared and evaluated as well. The dihydropyridone amides (1-3) displayed higher anti-trypanosomal activity. The (Z)-piplartine (1) showed higher activity with a 50% inhibition concentration (IC(50)) value of 10.5 mu M, almost four times more potent than the positive control, benznidazole (IC(50) = 42.7 mu M), and should be further evaluated as a suitable hit for the design of new antiprotozoal agents.
Resumo:
We previously reported the anti-inflammatory activity of Lafoensia pacari extract in Toxocara canis infection, a model of systemic IL-5-dependent eosinophil migration. In the present study, we describe the kinetics of the anti-inflammatory activity of L. pacari extract and compare it with dexamethasone. T canis-infected mice were submitted to different treatment protocols and the cells present in bronchoalveolar space and peritoneal cavity were collected at the end of each treatment period. The results showed that L. pacari extract effectively inhibited eosinophil migration only when the treatment was initiated before the peak of eosinophil migration (1st to 18th; 12th to 18th and 12th to 24th day post-infection). When eosinophil migration was established, administration of L. pacari extract had no effect on it (treatment 18th to 24th day post-infection). Dexamethasone was effective in inhibiting eosinophil migration in all periods studied. We suggest that L pacari extract can potentially be a natural alternative treatment of eosinophilic diseases. (c) 2007 Published by Elsevier GmbH.
Resumo:
We have shown that the ethanolic extract of Lafoensia pacari inhibits eosinophilic inflammation induced by Toxocara canis infection, and that ellagic acid is the secondary metabolite responsible for the anti-eosinophilic activity seen in a model of beta-glucan peritonitis. In the present study, we investigated the preventive and curative effects of L. pacari extract and ellagic acid on allergic lung inflammation using a murine model of ovalbumin-induced asthma. In bronchoalveolar lavage fluid, preventive (22-day) treatment with L. pacari (200 mg/kg) and ellagic acid (10 mg/kg) inhibited neutrophil counts (by 75% and 57%) and eosinophil counts (by 78% and 68%). L. pacari reduced IL-4 and IL-13 levels (by 67% and 73%), whereas ellagic acid reduced IL-4, IL-5 and IL-13 (by 67%, 88% and 85%). To investigate curative anti-inflammatory effects, we treated mice daily with ellagic acid (0.1, 1, or 10 mg/kg), also treating selected mice with L. pacari (200 mg/kg) from day 18 to day 22. The highest ellagic acid dose reduced neutrophil and eosinophil numbers (by 59% and 82%), inhibited IL-4, IL-5, and IL-13 (by 62%,61%, and 49%). Neither L. pacari nor ellagic acid suppressed ovalbumin-induced airway hyperresponsiveness or cysteinyl leukotriene synthesis in lung homogenates. In mice treated with ellagic acid (10 mg/kg) or L. pacari (200 mg/kg) at 10 min after the second ovalbumin challenge, eosinophil numbers were 53% and 69% lower, respectively. Cytokine levels were unaffected by this treatment. L. pacari and ellagic acid are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies. (c) 2007 Elsevier B.V All rights reserved.
Evaluation of the genotoxic and anti-genotoxic activities of Silybin in human hepatoma cells (HepG2)
Resumo:
Silybin (SB), a constituent of the medicinal plant Silybum marianum, is reported to be a potent hepatoprotective agent, but little is currently known regarding its genotoxicity, mutagenicity and potential chemopreventive properties. In this study, we evaluated the ability of SB to induce DNA migration and micronuclei (MN) formation in human hepatoma cells (HepG2). Also, possible preventive effects of SB on MN formation induced by three different mutagens, bleomycin (BLEO), benzo[a] pyrene (B[alpha] P) and aflatoxin B(1) (AFB(1)), were studied. To clarify the possible mechanism of SB antimutagenicity, three treatment protocols were applied: pretreatment, in which SB was added before the application of the mutagens; simultaneous treatment, in which SB was added during treatment and post-treatment, in which SB was added after the application of the mutagens. At concentrations up to 100 mu M, SB was non-genotoxic, while at a concentration of 200 mu M, SB induced DNA migration, generated oxidized DNA bases, reduced cell viability, decreased the replicative index of the cells and induced oxidative stress. It is noteworthy that SB was able to reduce the genotoxic effect induced by B[alpha] P, BLEO and AFB1 in pretreatment and simultaneous treatments but had no significant effect on DNA damage induction in post-treatment. Taken together, our findings indicate that SB presents anti-genotoxic activity in vitro, which suggests potential use as a chemopreventive agent.
Resumo:
Cysteine residues 86 and 91 of the beta subunit of the human interleukin (hIL)-3 receptor (h beta c) participate in disulfide-linked receptor subunit heterodimerization. This linkage is essential for receptor tyrosine phosphorylation, since the Cys-86 --> Ala (Mc4) and Cys-91 --> Ala (Mc5) mutations abolished both events. Here, we used these mutants to examine whether disulfide-linked receptor dimerization affects the biological and biochemical activities of the IL-3 receptor. Murine T cells expressing hIL-3R alpha and Mc4 or Mc5 did not proliferate in hIL-3, whereas cells expressing wild-type h beta c exhibited rapid proliferation. However, a small subpopulation of cells expressing each mutant could be selected for growth in IL-3, and these proliferated similarly to cells expressing wild-type h beta c, despite failing to undergo IL-3-stimulated h beta e tyrosine phosphorylation. The Mc4 and Mc5 mutations substantially reduced, but did not abrogate, IL-3-mediated anti-apoptotic activity in the unselected populations. Moreover, the mutations abolished IL-3-induced JAK2, STAT, and AKT activation in the unselected cells, whereas activation of these molecules in IL-3-selected cells was normal. In contrast, Mc4 and Mc5 showed a limited effect on activation of Erk1 and -2 in unselected cells. These data suggest that whereas disulfide-mediated cross-linking and h beta c tyrosine phosphorylation are normally important for receptor activation, alternative mechanisms can bypass these requirements.
Resumo:
Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.
Resumo:
To study and characterize the in vivo effect of the lectin from Luetzelburgia auriculata seed on acute inflammation models. The lectin was purified from the crude saline extract by affinity chromatography on a guar-gum matrix. Native, heat-treated, and digested lectin was evaluated for anti-inflammatory activity by using peritonitis and paw edema models. The anti-inflammatory activity was characterized by intravital microscopy, nitric oxide production, and myeloperoxidase activity. The lectin exhibited anti-inflammatory activity (2 mg/kg) on both models, reducing local myeloperoxidase activity. Galactose or heat treatment (100A degrees C, 10 min) reduced anti-inflammatory action. Anti-inflammation involves the inhibition of adhesion and rolling of leukocytes along with augmentation of nitric oxide in serum. The lectin inhibited the edematogenic effect of histamine and prostaglandins (PGE2) but did not alter the chemoattractant effect of IL-8. The results indicate that this lectin is a potent anti-inflammatory molecule. Its effects engage diverse modulatory events.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
Tuberculosis (TB) is a worldwide infectious disease that has shown over time extremely high mortality levels. The urgent need to develop new antitubercular drugs is due to the increasing rate of appearance of multi-drug resistant strains to the commonly used drugs, and the longer durations of therapy and recovery, particularly in immuno-compromised patients. The major goal of the present study is the exploration of data from different families of compounds through the use of a variety of machine learning techniques so that robust QSAR-based models can be developed to further guide in the quest for new potent anti-TB compounds. Eight QSAR models were built using various types of descriptors (from ADRIANA.Code and Dragon software) with two publicly available structurally diverse data sets, including recent data deposited in PubChem. QSAR methodologies used Random Forests and Associative Neural Networks. Predictions for the external evaluation sets obtained accuracies in the range of 0.76-0.88 (for active/inactive classifications) and Q(2)=0.66-0.89 for regressions. Models developed in this study can be used to estimate the anti-TB activity of drug candidates at early stages of drug development (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pneumocystis pneumonia (PCP) is one of the most frequent causes of mortality among HIV-infected patients. Primaquine (PQ) is an antimalarial 8-aminoquinoline effective against PCP when given in combination with clindamycin. This has drawn the attention of Medicinal Chemists towards the anti-PCP activity of 8-aminoquinolines, not only confined to those exhibiting antimalarial activity [1]. It is thought that anti-PCP 8-aminoquinolines exert their anti-PCP activity by acting on the electronic transport and redox system of the P. carinii pathogen [1]. Recently, our research group has been developing imidazolidin-4-one derivatives of PQ (Scheme 1), targeting novel compounds with improved therapeutic action, namely, higher resistance to metabolic inactivation, lower toxicity and equal or higher antimalarial activity than that of the parent drug [2,3]. These imidazolidin-4-ones were seen to block the transmission of rodent malaria, caused by Plasmodium berghei on BalbC mice, to the mosquito vector Anopheles stephensi [3]. The anti-PCP activity of our PQ derivatives is now under study and preliminary in vitro assays [4] show that some of the compounds exhibit slight to moderate activity after a 72 h incubation period against P. carinii. In one case, the IC50 was comparable to that of parent PQ. Both these studies and forthcoming results from ongoing biological assays will be presented and discussed.
Resumo:
The introduction of highly active antiretroviral therapy (HAART) has caused a marked reduction in the occurrence and severity of parasitic infections, including the toxoplasmic encephalitis (TE). These changes have been attributed to the restoration of cell-mediated immunity. This study was developed to examine the activity of six antiretroviral protease inhibitors (API) on Toxoplasma gondii tachyzoites. The six API showed anti-Toxoplasma activity, with IC50 value between 1.4 and 6.6 µg/mL. Further studies at the molecular level should be performed to clarify if the use of API could be beneficial or not for AIDS patients with TE.