906 resultados para amyloid precursor protein (APP)
Resumo:
The genetics of Alzheimer disease (AD) are complex and not completely understood. Mutations in the amyloid precursor protein gene (APP) can cause early-onset autosomal dominant AD. In vitro studies indicate that cells expressing mutant APPs overproduce pathogenic forms of the A beta peptide, the major component of AD amyloid. However, mutations in the APP gene are responsible for 5% or less of all early-onset familial AD. A locus on chromosome 14 is responsible for AD in other early-onset AD families and represents the most severe form of the disease in terms of age of onset and rate of decline. Attempts to identify the AD3 gene by positional cloning methods are underway. At least one additional early-onset AD locus remains to be located. In late-onset AD, the apolipoprotein E gene allele epsilon 4 is a risk factor for AD. This allele appears to act as a dose-dependent age-of-onset modifier. The epsilon 2 allele of this gene may be protective. Other late-onset susceptibility factors remain to be identified.
Resumo:
beta-Amyloid deposition and neurofibrillary tangle formation are two histopathological features of Alzheimer disease. We have previously reported that beta-amyloid immunoreactive deposits form in the brains of transgenic mice programmed for neuronal expression of the 751-amino acid isoform of human beta-amyloid precursor protein (beta-APP751) and now describe that these animals also display Alz50 intraneuronal immunoreactivity similar to that seen in early Alzheimer disease. This suggests that abnormal beta-APP expression and/or beta-amyloid deposition promotes pathogenic alterations in tau protein. The frequency of both beta-amyloid deposition and Alz50-positive neurons was twice as prevalent in brains from old (22 months) as compared to young (2-3 months) beta-APP751 transgenic mice. This increase in histopathology with age in beta-APP751 transgenic mice parallels the time-dependent progression seen in the human disease.
Resumo:
Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.
Resumo:
Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.
Resumo:
The density of diffuse, primitive, classic and compact β-amyloid ( β A4) deposits was estimated in the hippocampus and adjacent gyri in human patients with Down's syndrome (DS) and sporadic Alzheimer's disease (AD). The objective of the study was to determine whether there were differences in β A4 deposition in DS and sporadic AD and whether these differences could be attributed to overexpression of the amyloid precursor gene (APP) in DS. Total β A4 deposit density was greater in DS than AD in all brain regions studied but the DS/AD density ratios varied between brain regions. In the majority of brain regions, the ratio of primitive to diffuse β A4 deposits was greater in DS but the ratio of classic to diffuse deposits was greater in AD. The data were consistent with the hypothesis that overexpression of the APP gene in DS may lead to increased β A4 deposition. However, local brain factors also appear to be important in β A4 deposition in DS. Overexpression of the APP gene may also be responsible for increased production of paired helical filaments (PHF) and result in enhanced formation of primitive β A4 deposits in DS. In addition, increased formation of classic deposits in AD suggests that factors necessary for the production of a compact amyloid core are enhanced in AD compared with DS. © 1994.
Resumo:
The density of diffuse, primitive, classic and compact βamyloid (Aβ deposits was estimated in regions of the medial temporal lobe (MTL) in 15 cases of late-onset sporadic Alzheimer's disease (AD) and 12 cases of Down's syndrome (DS). A similar pattern of Aβ deposition was observed in the MTL in the AD and DS cases with a reduced density of deposits in the hippocampus compared with the adjacent cortical regions. Total Aβ deposit density was greater in DS than in AD in all brain regions examined. This could be attributable to overexpression of the amyloid precursor protein gene. The ratio of the primitive to the diffuse Aβ deposits was greater in DS than in AD which suggests that the formation of mature amyloid deposits is enhanced in DS. The diffuse deposits exhibited a parabolic and the primitive deposits an inverted parabolic response with age in the DS cases. This suggests either that the diffuse and primitive deposits are sequentially related or that there are alternate pathways of Aβ deposition. © 1995 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Resumo:
Notch receptor-mediated intracellular events represent an ancient cell signaling system, and alterations in Notch expression are associated with various malignancies in which Notch may function as an oncogene or less commonly as a tumor suppressor. Notch signaling regulates cell fate decisions in the epidermis, including influencing stem cell dynamics and growth/differentiation control of cells in skin. Because of increasing evidence that the Notch signaling network is deregulated in human malignancies, Notch receptors have become attractive targets for selective killing of malignant cells. Compared with proliferating normal human melanocytes, melanoma cell lines are characterized by markedly enhanced levels of activated Notch-1 receptor. By using a small molecule gamma-secretase inhibitor (GSI) consisting of a tripeptide aldehyde, N-benzyloxycarbonyl-Leu-Leu-Nle-CHO, which can block processing and activation of all four different Notch receptors, we identified a specific apoptotic vulnerability in melanoma cells. GSI triggers apoptosis in melanoma cells, but only G2/M growth arrest in melanocytes without subsequent cell death. Moreover, GSI treatment induced a pro-apoptotic BH3-only protein, NOXA, in melanoma cells but not in normal melanocytes. The use of GSI to induce NOXA induction overcomes the apoptotic resistance of melanoma cells, which commonly express numerous cell survival proteins such as Mcl-1, Bcl-2, and survivin. Taken together, these results highlight the concept of synthetic lethality in which exposure to GSI, in combination with melanoma cells overexpressing activated Notch receptors, has lethal consequences, producing selective killing of melanoma cells, while sparing normal melanocytes. By identifying signaling pathways that contribute to the transformation of melanoma cells (e.g. Notch signaling), and anti-cancer agents that achieve tumor selectivity (e.g., GSI-induced NOXA), this experimental approach provides a useful framework for future therapeutic strategies in cutaneous oncology.
Resumo:
The epsilon 4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing epsilon 3 and epsilon 4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The epsilon 4 isoform of apolipoprotein E (ApoE4) that is involved in neuron-glial lipid metabolism has been demonstrated as the main genetic risk factor in late-onset of Alzheimer's disease. However, the mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We created a transgenic model of neurodegenerative disorder by expressing epsilon 3 and epsilon 4 isoforms of human ApoE in the Drosophila melanogaster. The genetic models exhibited progressive neurodegeneration, shortened lifespan and memory impairment. Genetic interaction studies between amyloid precursor protein and ApoE in axon pathology of the disease revealed that over expression of hApoE in Appl-expressing neurons of Drosophila brain causes neurodegeneration. Moreover, acute oxidative damage in the hApoE transgenic flies triggered a neuroprotective response of hApoE3 while chronic induction of oxidative damage accelerated the rate of neurodegeneration. This Drosophila model may facilitate analysis of the molecular and cellular events implicated in hApoE4 neurotoxicity. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.
Resumo:
The intersection of the amyloid cascade hypothesis and the implication of metal ions in Alzheimer's disease progression has sparked an interest in using metal-binding compounds as potential therapeutic agents. In the present work, we describe a prochelator SWH that is enzymatically activated by beta-secretase to produce a high affinity copper chelator CP. Because beta-secretase is responsible for the amyloidogenic processing of the amyloid precursor protein, this prochelator strategy imparts disease specificity toward copper chelation not possible with general metal chelators. Furthermore, once activated, CP efficiently sequesters copper from amyloid-beta, prevents and disassembles copper-induced amyloid-beta aggregation, and diminishes copper-promoted reactive oxygen species formation.
Resumo:
BACKGROUND: The Notch signaling pathway is constitutively activated in human cutaneous melanoma to promote growth and aggressive metastatic potential of primary melanoma cells. Therefore, genetic variants in Notch pathway genes may affect the prognosis of cutaneous melanoma patients. METHODS: We identified 6,256 SNPs in 48 Notch genes in 858 cutaneous melanoma patients included in a previously published cutaneous melanoma genome-wide association study dataset. Multivariate and stepwise Cox proportional hazards regression and false-positive report probability corrections were performed to evaluate associations between putative functional SNPs and cutaneous melanoma disease-specific survival. Receiver operating characteristic curve was constructed, and area under the curve was used to assess the classification performance of the model. RESULTS: Four putative functional SNPs of Notch pathway genes had independent and joint predictive roles in survival of cutaneous melanoma patients. The most significant variant was NCOR2 rs2342924 T>C (adjusted HR, 2.71; 95% confidence interval, 1.73-4.23; Ptrend = 9.62 × 10(-7)), followed by NCSTN rs1124379 G>A, NCOR2 rs10846684 G>A, and MAML2 rs7953425 G>A (Ptrend = 0.005, 0.005, and 0.013, respectively). The receiver operating characteristic analysis revealed that area under the curve was significantly increased after adding the combined unfavorable genotype score to the model containing the known clinicopathologic factors. CONCLUSIONS: Our results suggest that SNPs in Notch pathway genes may be predictors of cutaneous melanoma disease-specific survival. IMPACT: Our discovery offers a translational potential for using genetic variants in Notch pathway genes as a genotype score of biomarkers for developing an improved prognostic assessment and personalized management of cutaneous melanoma patients.
Resumo:
Notch signaling is implicated in prostate cancer progression and docetaxel resistance. Cui and colleagues describe the additive efficacy and mechanisms of a γ-secretase inhibitor, PF-03084014, and docetaxel in preclinical models of prostate cancer, suggesting the need for further clinical development of Notch pathway modulators in men with metastatic prostate cancer.
Resumo:
Thrombin-activable fibrinolysis inhibitor (TAFI) is a carboxypeptidase B-like pro-enzyme that, once activated, attenuates fibrinolysis. TAFIa also possesses anti-inflammatory properties. Although liver is the main source of plasma TAFI, platelet-derived TAFI has also been reported. An alternatively spliced TAFI variant resulted from the skipping of exon 6 and a 52-base deletion in exon 10 of CPB2 mRNA (∆6+10) was described to be brain specific. This TAFI variant is reputed to possess a secretase-like activity that cleaves β-amyloid precursor protein to form β-amyloid, a process involved in the onset of Alzheimer's disease. In this thesis, we report the identification of CPB2 mRNA and TAFI protein in various vascular and inflammatory cells. Specifically, we describe the expression of CPB2 mRNA in the megakaryocytic cell lines MEG-01 and Dami, the monocytic cell line THP-1, and peripheral blood mononuclear cells. TAFI protein was detected in differentiated Dami and THP-1 cells. We next describe the effect of external stimuli such as phorbol myristate acetate (PMA) on CPB2 expression in Dami and THP-1 cells. We found that PMA treatment increases both CPB2 mRNA abundance and promoter activity in Dami cells, and decreases both CPB2 mRNA abundance and promoter activity in THP-1 cells. Deletion analysis of the CPB2 promoter indicated cell-type specific regulation of CPB2 gene expression. Finally, we evaluated the expression of alternatively spliced CPB2 mRNA variants in hepatic and non hepatic cells. We found that exon 6 skipping variants are expressed in all cell types of interest. The variant previously reported to be brain specific was also found to be expressed in platelets. We found that the alternatively spliced TAFI variants accumulated inside the cells in a non-secretable, hypoglycosylated form and showed no carboxypeptidase activity. Taken together, this thesis provides further evidence supporting the hypothesis that platelet-derived TAFI is originated from CPB2 gene expression in megakaryocytes. Moreover, our data imply a potential for site-specific anti-inflammatory control provided by macrophage-derived TAFI. Alternative splicing of the CPB2 mRNA may give rise to variants with an intracellular role, perhaps as a peptidase chaperone, and may modulate the synthesis of secretable TAFI.