982 resultados para alternative control of plant diseases
Resumo:
Trichoderma isolates were obtained from diseased leaves and fruit collected from plantations in the main banana production area in Northern Queensland. Phylogenetic analyses identified the Trichoderma isolates as T. harzianum and T. virens. The Trichoderma spp. were found to be antagonistic against the banana leaf pathogens Mycosphaerella musicola, Cordana musae, and Deight-oniella torulosa in vitro. Several products used by the banana industry to increase production, including molasses, Fishoil and Seasol, were tested as food source for the Trichoderma isolates. The optimal food substrate was found to be molasses at a concentration of 5 %, which when used in combination with a di-1-p-menthene spreader-sticker enhanced the survivability of Trichoderma populations under natural conditions. This formulation suppressed D. torulosa development under glasshouse conditions. Furthermore, high sensitivity was observed towards the protectant fungicide Mancozeb but Biopest oil (R), a paraffinic oil, only marginally suppressed the growth of Trichoderma isolates in vitro. Thus, this protocol represents a potential to manage banana leaf pathogens as a part of an integrated disease approach.
Resumo:
The effect of different fungicide programs on grey mould (caused by Botrytis cinerea) and stem-end rot (caused by Gnomoniopsis fructicola) affecting strawberry plants (Fragaria ×ananassa cv. Festival) was studied in subtropical Australia over three years. The treatments involved a range of different synthetic multi- and single-site fungicides with different modes of action, a plant-defence promoter, plant extracts (lupin and rhubarb), organic acids, fatty acids, a salt, two strains of Bacillus subtilis, and single strains of B. amyloliquefaciens, Streptomyces lydicus and Trichoderma harzianum. Standard programs based on captan and thiram alternated, and applied with iprodione, fenhexamid, cyprodinil + fludioxonil, and penthiopyrad resulted in 3–4 % of unmarketable fruit compared with 25–38 % in the water-treated controls. There was no difference in the level of disease suppression when five or thirteen applications of single-site fungicides were rotated with the two multi-site fungicides. The incidence of unmarketable fruit was similar to the standard programs using isopyrazam (in 1 year out of 2), or penthiopyrad, fluazinam, chlorothalonil or thiram alone (in 1 year out of 1). The other fungicide programs were generally less effective. There were strong relationships between marketable yield and the incidence of unmarketable fruit over the three years (R2s = 0.82–0.93). A strategy based on thiram and captan applied alternately, with reduced applications of single-site fungicides is recommended and should reduce the chance of resistance to single-site fungicides becoming widespread in populations of the grey mould fungus. Although the program based on thiram alone had a similar incidence of unmarketable fruit as the standard program, repeated weekly applications of thiram are not recommended as they may cause unacceptable residues in the fruit. There were issues with some of the other fungicides due to phytotoxicity, residues, or difficulties with registering new fungicides that are in the same chemical group as currently registered products.
Resumo:
2016
Resumo:
Besides their own adaptation strategies, plants might exploit microbial symbionts for overcoming both biotic and abiotic stresses and increase fitness. The current scenario of rapid climate change is demanding more sustainable agricultural management practices. The application of microbe-based products as a valid alternative to synthetic pesticides and fertilizers and their use to overcome stresses exacerbated by climate change, have been reviewed in the first part of this thesis. Berry fruits are widely cultivated and appreciated for their aromatic and nutraceutical properties. This thesis is focused on the role of plant and fruit microbiome on strawberry and raspberry growth, resistance, fruit quality and aroma. A taxonomical and functional description of the microbiome of different organs of three strawberry genotypes was performed both by traditional cultural dependent method and Next Generation Sequencing technique, highlighting a significant role of plant organs and genotype in determining the composition of microbial communities. Additionally, a selection of bacteria native of strawberry plants were isolated and screened for their plant growth promoting abilities and tested under the biotic stress of Xanthomonas fragariae infection and the abiotic stress of induced salinity. The monitoring of biometric parameters allowed the selection of a more restricted panel of bacterial strains, whose beneficial potential was tested in coordinated inoculations, or singularly. Raspberry plant was used for investigating the effect of cultivation method in determining fruit microbiome, and its consequent influence of berry quality and aroma. Interestingly, the cultivation method strongly influenced fruit nutraceutical traits, aroma and epiphytic bacterial biocoenosis. The involvement of the bacterial microbiota in fruit aroma determination was evaluated by performing GC–MS analysis of VOCs occurring in control, sterile and artificially reinoculated berries and by characterizing control and reinoculated berry microbiome. Differently treated berries showed significantly different aromatic profile, confirming the role of bacteria in fruit aroma development.
Resumo:
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.
Resumo:
To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (yuc2yuc6sci1) and double (npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.
Resumo:
The mechanical control of supragingival biofilm is accepted as one of the most important measures to treat and prevent dental caries and periodontal diseases. Nevertheless, maintaining dental surfaces biofilm-free is not an easy task. In this regard, chemical agents, mainly in the form of mouthwashes, have been studied to help overcome the difficulties involved in the mechanical control of biofilm. The aim of this paper was to discuss proposals for the teaching of supragingival chemical control (SCC) in order to improve dentists' knowledge regarding this clinical issue. Firstly, the literature regarding the efficacy of antiseptics is presented, clearly showing that chemical agents are clinically effective in the reduction of biofilm and gingival inflammation when used as adjuvant agents to mechanical control. Thus, it is suggested that the content related to SCC be included in the curricular grid of dental schools. Secondly, some essential topics are recommended to be included in the teaching of SCC as follows: skills and competencies expected of a graduate dentist regarding SCC; how to include this content in the curricular grid; teaching-learning tools and techniques to be employed; and program content.
Resumo:
Identification of animals that are decomposing or have been run over or burnt and cannot be visually identified is a problem in the surveillance and control of infectious diseases. Many of these animals are wild and represent a valuable source of information for epidemiologic research as they may be carriers of an infectious agent. This article discusses the results obtained using a method for identifying mammals genetically by sequencing their mitochondrial DNA control region. Fourteen species were analyzed and identified. These included the main reservoirs and transmitters of rabies virus, namely, canids, chiroptera and primates. The results prove that this method of genetic identification is both efficient and simple and that it can be used in the surveillance of infectious diseases which includes mammals in their epidemiologic cycle, such as rabies.
Resumo:
Cardiovascular disease is a serious public health problem; it is the first cause of death in Brazil and in developed countries. Thus, it is essential to search for alternative sources such as some functional foods to prevent and control the risks of this disease. The purpose of this study was to evaluate the lipidemic parameters in hypercholesterolemic rats fed diets containing black rice variety IAC 600 or unrefined rice. Adult male Wistar rats (Rattus norvegicus var. albinos) were used, weighing about 200-220 g. The animals were divided into four groups: the first received a control casein diet, the second received hypercholesterolemic diet, and the other two groups, after induction of hypercholesterolemia, received the test diets, the first containing 20% black rice and the second 20% unrefined, for 30 days. It was observed that diet containing black rice reduced the level of plasma cholesterol, triglycerides, and low-density lipoprotein. For high-density lipoprotein values, the diet that provided an increase in the levels was the black rice. The diet containing black rice was more effective in controlling the lipidemia in rats compared with the whole rice diet.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
Diagnosing herbicide-resistant weed populations is the first step for herbicide resistance management. Monitoring the nature, distribution, and abundance of the resistant plants in fields demands efficient and effective screening tests. Different glyphosate resistant populations of Lolium multiflorum (VA) and L. rigidum (C) were used in assays for testing their effectiveness to detect herbicide resistance. According to a Petri dish bioassay 7 days after treatment (DAT), the VA and the C populations were 27 and 31 times more resistant to glyphosate than the susceptible populations, L. multiflorum (SM) and L. rigidum (SR), respectively. On a whole-plant bioassay (21 DAT), the VA and the C populations were 6 and 11 times more resistant to glyphosate than their respective susceptible populations. The susceptible populations accumulated 2.5 and 1.4-fold more shikimic acid 48 hours after treatment (HAT), than the resistant VA and C. Glyphosate gradually inhibited net photosynthesis in all populations but at 48-72 HAT the resistant plants recovered, whereas no recovery was detected in susceptible populations. All assays were capable of detecting the resistant populations and this may be useful for farmers and consultants as an effective tool to reduce the spread of the resistant populations through quicker implementation of alternative weed management practices. However, they differed in time, costs and equipments necessaries for successfully carrying on the tests. Regarding costs, the cheapest ones were Petri dish and whole-plant bioassays, but they are time-consuming methods as the major constraints are the collection of seeds from the field and at least some weeks to evaluate the resistance. The shikimic acid and net photosynthesis assays were the quickest ones but they demand sophisticated equipments which could restrict its use.
Resumo:
Feed is responsible for about 70% of broilers production costs, leading to an increasing number of studies on alternative dietary products that benefit bird performance and lower production costs. Since the 1950s, antimicrobial additives are the most frequently used performance enhancers in animal production and their positive results are observed even in high-challenge conditions. Since the 1990s, due to the ban of the use of some antibiotics as growth promoters and the growing trend of the public to consume natural products, plant extracts have been researched as alternatives to antibiotic growth promoters. The first study that evaluated the antibacterial activities of plant extracts was carried out in 1881; however, they started to be used as flavor enhancers only during the next decades. With the emergence of antibiotics in the 1950s, the use of plant extracts as antimicrobial agents almost disappeared. There are several studies in literature assessing the use of plant extracts, individually or in combination, as antimicrobials, antioxidants, or digestibility enhancers in animal feeds. Research results on the factors affecting their action, such as plant variety, harvest time, processing, extraction, as well as the technology employed to manufacture the commercial product and dietary inclusion levels show controversial results, warranting the need of further research and standardization for the effective use of plant extracts as performance enhancers, when added to animal feeds. This article aims at presenting plant extracts as alternatives to antibiotics, explaining their main modes of action as performance enhancers in broiler production.
Resumo:
Commercial farming of carnivorous fish demands the reduction of environmental impact of feeds; that requires minimal use of dietary animal protein. This study investigated the digestibility of diets formulated exclusively out of plant protein, added feed attractants, by the carnivore largemouth bass, Micropterus salmoides. Juvenile largemouth bass (14.0 +/- 1.0 cm) conditioned to accept artificial, dry feed were confined in polypropylene cages and fed ad libitum in three daily meals, seven experimental diets containing varying levels of vegetable and animal protein sources, added of different feed stimulants. After last daily meal, cages were transferred to cylindrical-conical-bottomed, 200-L aquaria, where faeces were collected by sedimentation into refrigerated containers, preserved and later analysed for chemical composition. Soybean meal can be used as partial substitute of animal protein in diets for largemouth bass; the poultry by-product meal shows as a good option as animal protein source in these rations. Control treatment - 50PP : 50AP - yielded best performances; the need for the use of fish meal in the formulation for carnivorous diets is, at least, questionable. Results of the digestibility trials demonstrated the importance of determining the diet digestibility, if precision in the formulation of least-cost feeds for carnivorous fish is the ultimate goal.