998 resultados para all-ceramic


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The planar design of solid oxide fuel cell (SOFC) is the most promising one due to its easier fabrication, improved performance and relatively high power density. In planar SOFCs and other solid-electrolyte devices, gas-tight seals must be formed along the edges of each cell and between the stack and gas manifolds. Glass and glass-ceramic (GC), in particular alkaline-earth alumino silicate based glasses and GCs, are becoming the most promising materials for gas-tight sealing applications in SOFCs. Besides the development of new glass-based materials, new additional concepts are required to overcome the challenges being faced by the currently existing sealant technology. The present work deals with the development of glasses- and GCs-based materials to be used as a sealants for SOFCs and other electrochemical functional applications. In this pursuit, various glasses and GCs in the field of diopside crystalline materials have been synthesized and characterized by a wide array of techniques. All the glasses were prepared by melt-quenching technique while GCs were produced by sintering of glass powder compacts at the temperature ranges from 800−900 ºC for 1−1000 h. Furthermore, the influence of various ionic substitutions, especially SrO for CaO, and Ln2O3 (Ln=La, Nd, Gd, and Yb), for MgO + SiO2 in Al-containing diopside on the structure, sintering and crystallization behaviour of glasses and properties of resultant GCs has been investigated, in relevance with final application as sealants in SOFC. From the results obtained in the study of diopside-based glasses, a bilayered concept of GC sealant is proposed to overcome the challenges being faced by (SOFCs). The systems designated as Gd−0.3 (in mol%: 20.62MgO−18.05CaO−7.74SrO−46.40SiO2−1.29Al2O3 − 2.04 B2O3−3.87Gd2O3) and Sr−0.3 (in mol%: 24.54 MgO−14.73 CaO−7.36 SrO−0.55 BaO−47.73 SiO2−1.23 Al2O3−1.23 La2O3−1.79 B2O3−0.84 NiO) have been utilized to realize the bi-layer concept. Both GCs exhibit similar thermal properties, while differing in their amorphous fractions, revealed excellent thermal stability along a period of 1,000 h. They also bonded well to the metallic interconnect (Crofer22APU) and 8 mol% yttrium stabilized zirconium (8YSZ) ceramic electrolyte without forming undesirable interfacial layers at the joints of SOFC components and GC. Two separated layers composed of glasses (Gd−0.3 and Sr−0.3) were prepared and deposited onto interconnect materials using a tape casting approach. The bi-layered GC showed good wetting and bonding ability to Crofer22APU plate, suitable thermal expansion coefficient (9.7–11.1 × 10–6 K−1), mechanical reliability, high electrical resistivity, and strong adhesion to the SOFC componets. All these features confirm the good suitability of the investigated bi-layered sealant system for SOFC applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work emphasises on the synthesis and characterization of electro-active polymer-ceramic nanocomposites which can be used for pyroelectric thermal/infrared detection applications. Two sets of samples belong to polymer-microcrystalline composites have also been investigated in the work. The polymers used in the work have been commercially available ones, but the nanoceramics have been synthesized following simple chemical routes and aqueous organic gel routes. After characterizing the nanoceramics for their structure by powder XRD, they have been dispersed in liquid polymer and sonicated for uniform dispersion. The viscous mixture so formed was cast in the form of films for experimentation. Samples with volume fraction of the ceramic phase varied from 0 to 0.25 have been prepared. Solution growth was followed to prepare microcrystalline samples for the polymer-microcrystalline composites. The physical properties that determine the pyroelectric sensitivity of a material are dielectric constant, dielectric loss, pyroelectric coefficient, thermal conductivity and specific heat capacity. These parameters have been determined for all the samples and compositions reported in this work.The pyroelectric figures of merit for all the samples were determined. The pyroelectric figures of merit that determine the pyroelectric sensitivity of a material are current sensitivity, voltage responsivity and detectivity. All these have been determined for each set of samples and reported in the thesis. In order to assess the flexibility and mouldability of the composites we have measured the Shore hardness of each of the composites by indentation technique and compared with the pyroelectric figures of merit. Some important factors considered during the material fabrication stages were maximum flexibility and maximum figures of merit for pyroelectric thermal/IR detection applications. In order to achieve these goals, all the samples are synthesized as composites of polymers and nano/microcrystalline particles and are prepared in the form of freestanding films. The selected polymer matrices and particle inclusions possess good pyroelectric coefficients, low thermal and dielectric properties, so that good pyroelectric figures of merit could be achieved. The salient features of the work include the particle size of the selected ceramic materials. Since they are in nanometer size it was possible to achieve high flexibility and moldability with high figures of merit for even low volume fractions of inclusions of the prepared nanocrystalline composites. In the case of microcrystalline TGS and DTGS, their composites in PU matrix protect them from fragility and humidity susceptibility and made them for environmental friendly applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at investigating in vitro osteogenesis on three fluorcanasite glass-ceramic compositions with different solubilities (K3, K5, and K8). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passage cells were cultured on K3, K5, and K8 and on Bioglass (R) 45S5 (45S5-control). Cell adhesion was evaluated at 24 h. For proliferation and viability, cells were cultured for 1, 4, and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA followed by Duncan`s test. Cell adhesion, cell proliferation, viability, total protein content, and ALP activity were not affected by fluorcanasite glass-ceramic composition and solubility. Bone-like formation was similar on all fluorcanasite-glass ceramics and was reduced compared to 45S5. The changes in the chemical composition and consequently solubility of the fluorcanasite glass-ceramics tested here did not significantly alter the in vitro osteogenesis. Further modifications of the chemical composition of the fluorcanasite glass-ceramic would be required to improve bone response, making this biomaterial a good candidate to be employed as a bone substitute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al(2)O(3):Eu(3+)(1%) samples were prepared by combustion, ceramic, and Pechini methods annealed from 400 to 1400 degrees C. XRD patterns indicate that samples heated up to 1000 degrees C present disordered character of activated alumina (gamma-Al(2)O(3)). However, alpha-Al(2)O(3) phase showed high crystallinity and thermostability at 1200-1400 degrees C. The sample characterizations were also carried out by means of infrared spectroscopy (IR), scanning electron microscopy (SEM) and specific surface areas analysis (BET method). Excitation spectra of Al(2)O(3):Eu(3+) samples present broaden bands attributed to defects of Al(2)O(3) matrices and to LMCT state of O -> Eu(3+), however, the narrow bands are assigned to (7)F(0) -> (5)D(J),(5)H(J) and (5)L(J) transitions of Eu(3+) ion. Emission spectra of samples calcined up to 1000 degrees C show broaden bands for (5)D(0) -> (7)F(J) transitions of Eu(3+) ion suggesting that the rare earth ion is in different symmetry sites showed by inhomogeneous line broadening of bands, confirming the predominance of the gamma-alumina phase. For all samples heated from 1200 to 1400 degrees C the spectra exhibit narrow (5)D(0) -> (7)F(J) transitions of Eu(3+) ion indicating the conversion of gamma to alpha-Al(2)O(3) phases, a high intensity narrow peak around 695 nm assigned to R lines of Cr(3+) ion is shown. Al(2)O(3):Eu(3+) heated up to 1100 degrees C presents an increase in the Omega(2) intensity parameter with the increase of temperatures enhancing the covalent character of metal-donor interaction. The disordered structural systems present the highest values of emission quantum efficiencies (eta). CIE coordinates of Al(2)O(3):Eu(3+) are also discussed. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the effect of glass ceramic silica matrix on [CrO4](4-) and Cr2O3 NIR and visible luminescence. Chromium-containing silica was obtained by precipitation from water-glass and chromium nitrate acid solution with thermal treatment at 1000 degrees C. From XRD results silica and silica-chromium samples are crystalline. The chromium emission spectrum presents two main broad bands: one in the NIR region (1.1-1.7 mu m) and other in the visible region (0.6-0.7 mu m) assigned to Cr4+ and to Cr3+, respectively. This thermal treated glass ceramic silica-chromium sample stabilizes the [CrO4](4-) where Cr4+ substitutes for Si4+ and also hexacoordinated Cr3+ group probably as segregated phase in the system. It can be pointed out that luminescence spectroscopy is a powerful toot for detecting the two chromium optical centers in the glass ceramic silica. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen production by air separation is of great importance in both environmental and industrial processes as most large scale clean energy technologies require oxygen as feed gas. Currently the conventional cryogenic air separation unit is a major economic impediment to the deployment of these clean energy technologies with carbon capture (i.e. oxy-fuel combustion ). Dense ceramic perovskite membranes are envisaged to replace the cryogenics and reduce O2 production costs by 35% or more; which can significantly cut the energy penalty by 50% when integrated in oxy-fuel power plant for CO2 capture. This paper reviews the current progress in the development of dense ceramic membranes for oxygen production. The principles, advantages or disadvantages, and the crucial problems of all kinds of membranes are discussed. Materials development, optimisation guidelines and suggestions for future research direction are also included. Some areas already previously reviewed are treated with less attention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An archeological artifact can be seen as a chronological element, which helps to determine the age of certain society and to understand the thinking, values and the way of life of this society. Thus, the classification of archeological artifacts is one of the approaches used to study the cultural system of antique societies trying to reconstruct their history. The "Centro de Museologia, Antropologia e Argueologia (CEMAARQ)" of the "Unesp Univ Estadual Paulista" in Presidente Prudente, São Paulo state, Brazil, develops projects within this context (identification and preservation). This is the case of the archeological site named "Lagoa São Paulo-02" discovered in 1993 at the margins of the Parana river in the region of Presidente Epitacio city, São Paulo state, Brazil. This site has ceramic fragments of different shapes and sizes that have a strong influence of traces of the Guarani culture, which is one of the Brazilian native populations. These samples were basically characterized via micro-Raman scattering and Fourier transform infrared absorption (FTIR) spectroscopies. The main objective was to identify the pigments used in the manufacture of the ceramic artifacts and to analyze the composition of the ceramic body to understand how the artifacts were made. Three pigments were found: red, black and white. For the red pigment were identified characteristic bands of hematite, an iron oxide found in the red rocks of the river banks that were eroded by water. The black pigment, probably, is due to the use of vegetal charcoal, which is found in nature as the product of burning organic material such as wood. For the white pigment, the FTIR spectra suggested the use of kaolin, either in the ceramic body or in the proper white pigment, due to the presence of the characteristic bands of the kaolinite. Complementary, the additives applied as anti-plastics were identified as charcoal and quartz, being the latter found in the rocks present in the archeological site. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane bagasse ash (SCBA) is a residue resulting from the burning of bagasse in boilers in the sugarcane/alcohol industry. SCBA has a very high silica concentration and contains aluminum, iron, alkalis and alkaline earth oxides in smaller amounts. In this work, the properties of sintered ceramic bodies were evaluated based on the concentration of SCBA, which replaced non-plastic material. The ash was mixed (up to 60 wt%) with a clayed raw material that is used to produce roof tiles. Prismatic probes were pressed and sintered at different temperatures (up to 1200 degrees C). Technological tests of ceramic probes showed that the addition of ash has little influence on the ceramic properties up to 1000 C. X-ray diffraction and thermal analysis data showed that, above this temperature the ash participates in the sintering process and in the formation of new important phases. The results reported show that the reuse of SCBA in the ceramic industry is feasible. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method has been developed to obtain quantitative information about grain size and shape from fractured surfaces of ceramic materials. One elaborated a routine to split intergranular and transgranular grains facets of ceramic fracture surfaces by digital image processing. A commercial ceramic (ALCOA A-16, Al2O3-1.5% of CrO) was used to test the proposed method. Microstructural measurements of grain shape and size taken from fracture surfaces have been compared through descriptive statistics of distributions, with the corresponding measurements from polished and etched surfaces. The agreement between results, with the expected bias on grain size values from fractures, obtained for both types of surfaces allowed to infer that this new technique can be used to extract the relevant microstructural information from fractured surfaces, thus minimising the time consuming steps of sample preparation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slightly < 111 >-oriented 0.65Pb(Mg1/3Nb2/3)03-0.35PbTiO(3) ceramic was prepared using fine powders obtained by means of an alternative and promising chemical oxide precursor method. High quality samples with improved structural, microstructural, dielectric and ferroelectric properties were obtained. The dielectric constant value (epsilon similar to 2577) measured at 1 kHz is compared to unpoled < 112 > grain-oriented ceramics while the remanent polarization (P-r similar to 19-1 mu cm(-2)) is compared with random grain-oriented ceramics. These results point out the viability to produce ferroelectric PMN-PT ceramics of very good quality using powder precursors prepared from this chemical method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.