631 resultados para algorithmic skeletons
Resumo:
Network Jamming systems provide real-time collaborative media performance experiences for novice or inexperienced users. In this paper we will outline the theoretical and developmental drivers for our Network Jamming software, called jam2jam. jam2jam employs generative algorithmic techniques with particular implications for accessibility and learning. We will describe how theories of engagement have directed the design and development of jam2jam and show how iterative testing cycles in numerous international sites have informed the evolution of the system and its educational potential. Generative media systems present an opportunity for users to leverage computational systems to make sense of complex media forms through interactive and collaborative experiences. Generative music and art are a relatively new phenomenon that use procedural invention as a creative technique to produce music and visual media. These kinds of systems present a range of affordances that can facilitate new kinds of relationships with music and media performance and production. Early systems have demonstrated the potential to provide access to collaborative ensemble experiences to users with little formal musical or artistic expertise.This presentation examines the educational affordances of these systems evidenced by field data drawn from the Network Jamming Project. These generative performance systems enable access to a unique kind of music/media’ ensemble performance with very little musical/ media knowledge or skill and they further offer the possibility of unique interactive relationships with artists and creative knowledge through collaborative performance. Through the process of observing, documenting and analysing young people interacting with the generative media software jam2jam a theory of meaningful engagement has emerged from the need to describe and codify how users experience creative engagement with music/media performance and the locations of meaning. In this research we observed that the musical metaphors and practices of ‘ensemble’ or collaborative performance and improvisation as a creative process for experienced musicians can be made available to novice users. The relational meanings of these musical practices afford access to high level personal, social and cultural experiences. Within the creative process of collaborative improvisation lie a series of modes of creative engagement that move from appreciation through exploration, selection, direction toward embodiment. The expressive sounds and visions made in real-time by improvisers collaborating are immediate and compelling. Generative media systems let novices access these experiences with simple interfaces that allow them to make highly professional and expressive sonic and visual content simply by using gestures and being attentive and perceptive to their collaborators. These kinds of experiences present the potential for highly complex expressive interactions with sound and media as a performance. Evidence that has emerged from this research suggest that collaborative performance with generative media is transformative and meaningful. In this presentation we draw out these ideas around an emerging theory of meaningful engagement that has evolved from the development of network jamming software. Primarily we focus on demonstrating how these experiences might lead to understandings that may be of educational and social benefit.
Resumo:
This thesis maps the author's journey from a music composition practice to a composition and performance practice. The work involves the development of a software library for the purpose of encapsulating compositional ideas in software, and realising these ideas in performance through a live coding computer music practice. The thesis examines what artistic practice emerges through live coding and software development, and does this permit a blurring between the activities of music composition and performance. The role that software design plays in affecting musical outcomes is considered to gain an insight into how software development contributes to artistic development. The relationship between music composition and performance is also examined to identify the means by which engaging in live coding and software development can bring these activities together. The thesis, situated within the discourse of practice led research, documents a journey which uses the experience of software development and performance as a means to guide the direction of the research. The journey serves as an experiment for the author in engaging an hitherto unfamiliar musical practice, and as a roadmap for others seeking to modify or broaden their artistic practice.
Resumo:
This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.
Resumo:
Generative music systems can be performed by manipulating the values of their algorithmic parameters, and their semi-autonomous nature provides an opportunity for coordinated interaction amongst a network of systems, a practice we call Network Jamming. This paper outlines the characteristics of this networked performance practice and discusses the types of mediated musical relationships and ensemble configurations that can arise. We have developed and tested the jam2jam network jamming software over recent years. We describe this system, draw from our experiences with it, and use it to illustrate some characteristics of Network Jamming.
Resumo:
This paper describes a novel experiment in which two very different methods of underwater robot localization are compared. The first method is based on a geometric approach in which a mobile node moves within a field of static nodes, and all nodes are capable of estimating the range to their neighbours acoustically. The second method uses visual odometry, from stereo cameras, by integrating scaled optical flow. The fundamental algorithmic principles of each localization technique is described. We also present experimental results comparing acoustic localization with GPS for surface operation, and a comparison of acoustic and visual methods for underwater operation.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty, and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exists where the more mind changes the learner is willing to accept, the lesser the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
Live coding performances provide a context with particular demands and limitations for music making. In this paper we discuss how as the live coding duo aa-cell we have responded to these challenges, and what this experience has revealed about the computational representation of music and approaches to interactive computer music performance. In particular we have identified several effective and efficient processes that underpin our practice including probability, linearity, periodicity, set theory, and recursion and describe how these are applied and combined to build sophisticated musical structures. In addition, we outline aspects of our performance practice that respond to the improvisational, collaborative and communicative requirements of musical live coding.
Resumo:
This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.
Resumo:
Rare earth element geochemistry in carbonate rocks is utilized increasingly for studying both modern oceans and palaeoceanography, with additional applications for investigating water–rock interactions in groundwater and carbonate diagenesis. However, the study of rare earth element geochemistry in ancient rocks requires the preservation of their distribution patterns through subsequent diagenesis. The subjects of this study, Pleistocene scleractinian coral skeletons from Windley Key, Florida, have undergone partial to complete neomorphism from aragonite to calcite in a meteoric setting; they allow direct comparison of rare earth element distributions in original coral skeleton and in neomorphic calcite. Neomorphism occurred in a vadose setting along a thin film, with degradation of organic matter playing an initial role in controlling the morphology of the diagenetic front. As expected, minor element concentrations vary significantly between skeletal aragonite and neomorphic calcite, with Sr, Ba and U decreasing in concentration and Mn increasing in concentration in the calcite, suggesting that neomorphism took place in an open system. However, rare earth elements were largely retained during neomorphism, with precipitating cements taking up excess rare earth elements released from dissolved carbonates from higher in the karst system. Preserved rare earth element patterns in the stabilized calcite closely reflect the original rare earth element patterns of the corals and associated reef carbonates. However, minor increases in light rare earth element depletion and negative Ce anomalies may reflect shallow oxidized groundwater processes, whereas decreasing light rare earth element depletion may reflect mixing of rare earth elements from associated microbialites or contamination from insoluble residues. Regardless of these minor disturbances, the results indicate that rare earth elements, unlike many minor elements, behave very conservatively during meteoric diagenesis. As the meteoric transformation of aragonite to calcite is a near worst case scenario for survival of original marine trace element distributions, this study suggests that original rare earth element patterns may commonly be preserved in ancient limestones, thus providing support for the use of ancient marine limestones as proxies for marine rare earth element geochemistry.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
The support vector machine (SVM) has played an important role in bringing certain themes to the fore in computationally oriented statistics. However, it is important to place the SVM in context as but one member of a class of closely related algorithms for nonlinear classification. As we discuss, several of the “open problems” identified by the authors have in fact been the subject of a significant literature, a literature that may have been missed because it has been aimed not only at the SVM but at a broader family of algorithms. Keeping the broader class of algorithms in mind also helps to make clear that the SVM involves certain specific algorithmic choices, some of which have favorable consequences and others of which have unfavorable consequences—both in theory and in practice. The broader context helps to clarify the ties of the SVM to the surrounding statistical literature.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
From one view of composition—let us call it the inspired or “Mozartian” view—musical compositions arrive fully formed in the mind of the composer and simply require transcription. In reality, however, it seems that very few people are so inspired, and composition is often more akin to a gradual clarification and refinement of partially formed ideas on the musical landscape. Particular landmarks in the compositional landscape tend to become clear before others, such that the incomplete piece is a patchwork of disconnected musical islands. An interactive evolutionary morphing system may provide some assistance for composers, to help build bridges between musical islands by generating hybrid musical transitions.
Resumo:
We address the problem of constructing randomized online algorithms for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious adversary. Restricting our attention to the class of “work-based” algorithms, we provide a framework for designing algorithms that uses the technique of regularization. For the case when δ is a uniform metric, we exhibit two algorithms that arise from this framework, and we prove a bound on the competitive ratio of each. We show that the second of these algorithms is ln n + O(loglogn) competitive, which is the current state-of-the art for the uniform MTS problem.