993 resultados para air - sea exchanges
Resumo:
During the international "Overflow-Expedition'' 1973 on R.V. "Meteor" oxygen concentrations in surface layers were measured in order to determine the oxygen gradients within the first two meters and to add some informations to the mechanisms of oxygen exchange at the air-sea interface. These investigations may be interesting also with regard to longterm- observations of the oxygen distribution in the Atlantic, especially the problem of the A.O.U. (apparent oxygen utilization) determination. To measure oxygen gradients a special sampler was built which is able to take water samples each 20 cm of the first 2 meters. These data were supplemented by further samples down to 150 m, taken by conventional water samplers, from which samples were also taken to measure N2/O2-relations. By comparing these relations with theoretical relations in air-saturated water the influence of biological production and consumption on the oxygen contents in water could be estimated. A simple glass apparatus was built to extract gas from the water samples, and hereafter the N2/O2-relations were determined by mass spectrometry. Most distributions of the oxygen anomaly show a negative oxygen balance which varies largely, probably due to strong mixing processes in the Iceland-Faroe ridge area. The distribution of surface oxygen saturation values are of two different types. The values of the stations 260, 262 and 270 stem from mixed water and show homogeneous supersaturations, as can be found instantly when whitecaps appear. The values of 9 other stations are from water, sampled during calm periods which has been mixed and supersaturated before. They show a decreasing oxygen saturation towards the sea surface and often undersaturation in the upper decimeters up to 98 % and even 91 %. So at the air-sea interface even less initial oxygen saturation than 100 % can be found after supersaturation during heavy weather periods.
Resumo:
Seasonal patterns in hydrography, partial pressure of CO2, fCO2, pHt, total alkalinity, AT, total dissolved inorganic carbon, CT, nutrients, and chlorophyll a were measured in surface waters on monthly cruises at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) located in the northeast Atlantic subtropical gyre. With over 5 years of oceanographic data starting in 1996, seasonal and interannual trends of CO2 species and air-sea exchange of CO2 were determined. Net CO2 fluxes show this area acts as a minor source of CO2, with an average outgassing value of 179 mmol CO2/m**2 yr controlled by the dominant trade winds blowing from May to August. The effect of short-term wind variability on the CO2 flux has been addressed by increasing air-sea fluxes by 63% for 6-hourly sampling frequency. The processes governing the monthly variations of CT have been determined. From March to October, when CT decreases, mixing at the base of the mixed layer (11.5 ± 1.5 mmol/m**3) is compensated by air-sea exchange, and a net organic production of 25.5 ± 5.7 mmol/m**3 is estimated. On an annual scale, biological drawdown accounts for the decrease in inorganic carbon from March to October, while mixing processes control the CT increase from October to the end of autumn. After removing seasonality variability, fCO2sw increases at a rate of 0.71 ± 5.1 µatm/yr, and as a response to the atmospheric trend, inorganic carbon increases at a rate of 0.39 ± 1.6 µmol/kg yr.