976 resultados para affect theory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M(13). First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first- principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M(13) structures. Several new lower energy configurations were identified, e. g., Pd(13), W(13), Pt(13), etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au(13), we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence, most of the properties can be explained by the chemistry picture of occupation of the bonding and antibonding states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the unique geometry for nitric oxide (NO) adsorption on Pd(111) and Pt(111) surfaces as well as the effect of temperature were studied by density functional theory calculations and ab initio molecular dynamics at finite temperature. We found that at low coverage, the adsorption geometry is determined by electronic interactions, depending sensitively on the adsorption sites and coverages, and the effect of temperature on geometries is significant. At coverage of 0.25 monolayer (ML), adsorbed NO at hollow sites prefer an upright configuration, while NO adsorbed at top sites prefer a tilting configuration. With increase in the coverage up to 0.50 ML, the enhanced steric repulsion lead to the tilting of hollow NO. We found that the tilting was enhanced by the thermal effects. At coverage of 0.75 ML with p(2 x 2)-3NO(fcc+hcp+top) structure, we found that there was no preferential orientation for tilted top NO. The interplay of the orbital hybridization, thermal effects, steric repulsion, and their effects on the adsorption geometries were highlighted at the end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we report a density functional theory study of nitric oxide (NO) adsorption on close-packed transition metal (TM) Rh(111), Ir(111), Pd(111) and Pt(111) surfaces in terms of adsorption sites, binding mechanism and charge transfer at a coverage of Theta(NO) = 0.25, 0.50, 0.75 monolayer (ML). Based on our study, an unified picture for the interaction between NO and TM(111) and site preference is established, and valuable insights are obtained. At low coverage (0.25 ML), we find that the interaction of NO/TM(111) is determined by an electron donation and back-donation process via the interplay between NO 5 sigma/2 pi* and TM d-bands. The extent of the donation and back-donation depends critically on the coordination number (adsorption sites) and TM d-band filling, and plays an essential role for NO adsorption on TM surfaces. DFT calculations shows that for TMs with high d-band filling such as Pd and Pt, hollow-site NO is energetically the most favorable, and top-site NO prefers to tilt away from the normal direction. While for TMs with low d-band filling (Rh and Ir), top-site NO perpendicular to the surfaces is energetically most favorable. Electronic structure analysis show that irrespective of the TM and adsorption site, there is a net charge transfer from the substrate to the adsorbate due to overwhelming back-donation from the TM substrate to the adsorbed NO molecules. The adsorption-induced change of the work function with respect to bare surfaces and dipole moment is however site dependent, and the work function increases for hollow-site NO, but decreases for top-site NO, because of differences in the charge redistribution. The interplay between the energetics, lateral interaction and charge transfer, which is element dependent, rationalizes the structural evolution of NO adsorption on TM(111) surfaces in the submonolayer regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First-principles density-functional theory studies have reported open structures based on the formation of double simple-cubic (DSC) arrangements for Ru(13), Rh(13), Os(13), and Ir(13), which can be considered an unexpected result as those elements crystallize in compact bulk structures such as the face-centered cubic and hexagonal close-packed lattices. In this work, we investigated with the projected augmented wave method the dependence of the lowest-energy structure on the local and semilocal exchange-correlation (xc) energy functionals employed in density-functional theory. We found that the local-density approximation (LDA) and generalized-gradient formulations with different treatment of the electronic inhomogeneities (PBE, PBEsol, and AM05) confirm the DSC configuration as the lowest-energy structure for the studied TM(13) clusters. A good agreement in the relative total energies are obtained even for structures with small energy differences, e. g., 0.10 eV. The employed xc functionals yield the same total magnetic moment for a given structure, i.e., the differences in the bond lengths do not affect the moments, which can be attributed to the atomic character of those clusters. Thus, at least for those systems, the differences among the LDA, PBE, PBEsol, and AM05 functionals are not large enough to yield qualitatively different results. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3577999]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results: Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions: Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the stability, electronic properties, Rayleigh (elastic), and Raman (inelastic) depolarization ratios, infrared and Raman absorption vibrational spectra of fullerenols [C(60)(OH)(n)] with different degrees of hydroxylation by using all-electron density-functional-theory (DFT) methods. Stable arrangements of these molecules were found by means of full geometry optimizations using Becke's three-parameter exchange functional with the Lee, Yang, and Parr correlation functional. This DFT level has been combined with the 6-31G(d,p) Gaussian-type basis set, as a compromise between accuracy and capability to treat highly hydroxylated fullerenes, e.g., C(60)(OH)(36). Thus, the molecular properties of fullerenols were systematically analyzed for structures with n=1, 2, 3, 4, 8, 10, 16, 18, 24, 32, and 36. From the electronic structure analysis of these molecules, we have evidenced an important effect related to the weak chemical reactivity of a possible C(60)(OH)(24) isomer. To investigate Raman scattering and the vibrational spectra of the different fullerenols, frequency calculations are carried out within the harmonic approximation. In this case a systematic study is only performed for n=1-4, 8, 10, 16, 18, and 24. Our results give good agreements with the expected changes in the spectral absorptions due to the hydroxylation of fullerenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum plays an important role in catalysis and electrochemistry, and it is known that the direct interaction of oxygen with Pt surfaces can lead to the formation of platinum oxides (PtO(x)), which can affect the reactivity. To contribute to the atomistic understanding of the atomic structure of PtO(x), we report a density functional theory study of the atomic structure of bulk PtO(x) (1 <= x <= 2). From our calculations, we identified a lowest-energy structure (GeS type, space group Pnma) for PtO, which is 0.181 eV lower in energy than the structure suggested by W. J. Moore and L. Pauling [J. Am. Chem. Soc. 63, 1392 (1941)] (PtS type). Furthermore, two atomic structures were identified for PtO(2), which are almost degenerate in energy with the lowest-energy structure reported so far for PtO(2) (CaCl(2) type). Based on our results and analysis, we suggest that Pt and O atoms tend to form octahedron motifs in PtO(x) even at lower O composition by the formation of Pt-Pt bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation aimed at assessing the extent to which memory from practice in a specific condition of target displacement modulates temporal errors and movement timing of interceptive movements. We compared two groups practicing with certainty of future target velocity either in unchanged target velocity or in target velocity decrease. Following practice, both experimental groups were probed in the situations of unchanged target velocity and target velocity decrease either under the context of certainty or uncertainty about target velocity. Results from practice showed similar improvement of temporal accuracy between groups, revealing that target velocity decrease did not disturb temporal movement organization when fully predictable. Analysis of temporal errors in the probing trials indicated that both groups had higher timing accuracy in velocity decrease in comparison with unchanged velocity. Effect of practice was detected by increased temporal accuracy of the velocity decrease group in situations of decreased velocity; a trend consistent with the expected effect of practice was observed for temporal errors in the unchanged velocity group and in movement initiation at a descriptive level. An additional point of theoretical interest was the fast adaptation in both groups to a target velocity pattern different from that practiced. These points are discussed under the perspective of integration of vision and motor control by means of an internal forward model of external motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effects of rapid weight loss followed by a 4-h recovery on judo-related performance. Seven weight-cycler athletes were assigned to a weight loss group (5% body weight reduction by self-selected regime) and seven non-weight-cyclers to a control group (no weight reduction). Body composition, performance, glucose, and lactate were assessed before and after weight reduction (5-7 days apart; control group kept weight stable). The weight loss group had 4 h to re-feed and rehydrate after the weigh-in. Food intake was recorded during the weight loss period and recovery after the weigh-in. Performance was evaluated through a specific judo exercise, followed by a 5-min judo combat and by three bouts of the Wingate test. Both groups significantly improved performance after the weight loss period. No interaction effects were observed. The energy and macronutrient intake of the weight loss group were significantly lower than for the control group. The weight loss group consumed large amounts of food and carbohydrate during the 4-h recovery period. No changes were observed in lactate concentration, but a significant decrease in glucose during rest was observed in the weight loss group. In conclusion, rapid weight loss did not affect judo-related performance in experienced weight-cyclers when the athletes had 4 h to recover. These results should not be extrapolated to inexperienced weight-cyclers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear H(infinity) approaches. Two nonlinear H(infinity) controllers that guarantee induced L(2)-norm, between input (disturbances) and output signals, bounded by an attenuation level gamma, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection criteria for Euler-Bernoulli or Timoshenko beam theories are generally given by means of some deterministic rule involving beam dimensions. The Euler-Bernoulli beam theory is used to model the behavior of flexure-dominated (or ""long"") beams. The Timoshenko theory applies for shear-dominated (or ""short"") beams. In the mid-length range, both theories should be equivalent, and some agreement between them would be expected. Indeed, it is shown in the paper that, for some mid-length beams, the deterministic displacement responses for the two theories agrees very well. However, the article points out that the behavior of the two beam models is radically different in terms of uncertainty propagation. In the paper, some beam parameters are modeled as parameterized stochastic processes. The two formulations are implemented and solved via a Monte Carlo-Galerkin scheme. It is shown that, for uncertain elasticity modulus, propagation of uncertainty to the displacement response is much larger for Timoshenko beams than for Euler-Bernoulli beams. On the other hand, propagation of the uncertainty for random beam height is much larger for Euler beam displacements. Hence, any reliability or risk analysis becomes completely dependent on the beam theory employed. The authors believe this is not widely acknowledged by the structural safety or stochastic mechanics communities. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.