985 resultados para advanced techniques
Resumo:
The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.
Resumo:
The amount of biological data has grown exponentially in recent decades. Modern biotechnologies, such as microarrays and next-generation sequencing, are capable to produce massive amounts of biomedical data in a single experiment. As the amount of the data is rapidly growing there is an urgent need for reliable computational methods for analyzing and visualizing it. This thesis addresses this need by studying how to efficiently and reliably analyze and visualize high-dimensional data, especially that obtained from gene expression microarray experiments. First, we will study the ways to improve the quality of microarray data by replacing (imputing) the missing data entries with the estimated values for these entries. Missing value imputation is a method which is commonly used to make the original incomplete data complete, thus making it easier to be analyzed with statistical and computational methods. Our novel approach was to use curated external biological information as a guide for the missing value imputation. Secondly, we studied the effect of missing value imputation on the downstream data analysis methods like clustering. We compared multiple recent imputation algorithms against 8 publicly available microarray data sets. It was observed that the missing value imputation indeed is a rational way to improve the quality of biological data. The research revealed differences between the clustering results obtained with different imputation methods. On most data sets, the simple and fast k-NN imputation was good enough, but there were also needs for more advanced imputation methods, such as Bayesian Principal Component Algorithm (BPCA). Finally, we studied the visualization of biological network data. Biological interaction networks are examples of the outcome of multiple biological experiments such as using the gene microarray techniques. Such networks are typically very large and highly connected, thus there is a need for fast algorithms for producing visually pleasant layouts. A computationally efficient way to produce layouts of large biological interaction networks was developed. The algorithm uses multilevel optimization within the regular force directed graph layout algorithm.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
Advanced cardiac life support (ACLS) is a problem-based course that employs simulation techniques to teach the standard management techniques of cardiovascular emergencies. Its structure is periodically revised according to new versions of the American Heart Association guidelines. Since it was introduced in Brazil in 1996, the ACLS has been through two conceptual and structural changes. Detailed documented reports on the effect of these changes on student performance are limited. The objective of the present study was to evaluate the effect of conceptual and structural changes of the course on student ACLS performance at a Brazilian training center. This was a retrospective study of 3266 students divided into two groups according to the teaching model: Model 1 (N = 1181; 1999-2003) and Model 2 (N = 2085; 2003-2007). Model 2 increased practical skill activities to 75% of the total versus 60% in Model 1. Furthermore, the teaching material provided to the students before the course was more objective than that used for Model 1. Scores greater than 85% in the theoretical evaluation and approval in the evaluation of practice by the instructor were considered to be a positive outcome. Multiple logistic regression was used to adjust for potential confounders (specialty, residency, study time, opportunity to enhance practical skills during the course and location where the course was given). Compared to Model 1, Model 2 presented odds ratios (OR) indicating better performance in the theoretical (OR = 1.34; 95%CI = 1.10-1.64), practical (OR = 1.19; 95%CI = 0.90-1.57), and combined (OR = 1.38; 95%CI = 1.13-1.68) outcomes. Increasing the time devoted to practical skills did not improve the performance of ACLS students.
Resumo:
Malgré le progrès technologique et nos connaissances pharmaceutiques et médicales croissantes, le développement du médicament demeure un processus difficile, dispendieux, long et très risqué. Ce processus mérite d'être amélioré pour faciliter le développement de nouveaux traitements. À cette fin, cette thèse vise à démontrer l’utilité de principes avancés et d’outils élaborés en pharmacocinétique (PK), actuels et nouveaux. Ces outils serviront à répondre efficacement à des questions importantes lors du développement d’un médicament, sauvant ainsi du temps et des coûts. Le premier volet de la thèse porte sur l’utilisation de la modélisation et des simulations et la création d’un nouveau modèle afin d’établir la bioéquivalence entre deux formulations de complexe de gluconate ferrique de sodium en solution de sucrose pour injection. Comparé aux méthodes courantes, cette nouvelle approche proposée se libère de plusieurs présuppositions, et requiert moins de données. Cette technique bénéficie d’une robustesse scientifique tout en étant associée à des économies de temps et de coûts. Donc, même si développé pour produits génériques, elle pourra également s’avérer utile dans le développement de molécules innovatrices et « biosimilaires ». Le deuxième volet décrit l’emploi de la modélisation pour mieux comprendre et quantifier les facteurs influençant la PK et la pharmacodynamie (PD) d’une nouvelle protéine thérapeutique, la pegloticase. L’analyse a démontré qu’aucun ajustement posologique n’était nécessaire et ces résultats sont inclus dans la monographie officielle du produit. Grâce à la modélisation, on pouvait répondre à des questions importantes concernant le dosage d’un médicament sans passer par des nouvelles études ni d'évaluations supplémentaires sur les patients. Donc, l’utilisation de cet outil a permis de réduire les dépenses sans prolonger le processus de développement. Le modèle développé dans le cadre de cette analyse pourrait servir à mieux comprendre d’autres protéines thérapeutiques, incluant leurs propriétés immunogènes. Le dernier volet démontre l’utilité de la modélisation et des simulations dans le choix des régimes posologiques d’un antibiotique (TP-434) pour une étude de Phase 2. Des données provenant d’études de Phase 1 ont été modélisées au fur et à mesure qu’elles devenaient disponibles, afin de construire un modèle décrivant le profil pharmacocinétique du TP-434. Ce processus de modélisation exemplifiait les cycles exploratoires et confirmatoires décrits par Sheiner. Ainsi, en se basant sur des relations PK/PD d’un antibiotique de classe identique, des simulations ont été effectuées avec le modèle PK final, afin de proposer de nouveaux régimes posologiques susceptibles d’être efficace chez les patients avant même d'effectuer des études. Cette démarche rationnelle a mené à l’utilisation de régimes posologiques avec une possibilité accrue d’efficacité, sans le dosage inutile des patients. Ainsi, on s’est dispensé d’études ou de cohortes supplémentaires coûteuses qui auraient prolongé le processus de développement. Enfin, cette analyse est la première à démontrer l’application de ces techniques dans le choix des doses d’antibiotique pour une étude de Phase 2. En conclusion, cette recherche démontre que des outils de PK avancés comme la modélisation et les simulations ainsi que le développement de nouveaux modèles peuvent répondre efficacement et souvent de manière plus robuste à des questions essentielles lors du processus de développement du médicament, tout en réduisant les coûts et en épargnant du temps.
Resumo:
Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.
Resumo:
Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.
Resumo:
Phenolic compounds in wastewaters are difficult to treat using the conventional biological techniques such as activated sludge processes because of their bio-toxic and recalcitrant properties and the high volumes released from various chemical, pharmaceutical and other industries. In the current work, a modified heterogeneous advanced Fenton process (AFP) is presented as a novel methodology for the treatment of phenolic wastewater. The modified AFP, which is a combination of hydrodynamic cavitation generated using a liquid whistle reactor and the AFP is a promising technology for wastewaters containing high organic content. The presence of hydrodynamic cavitation in the treatment scheme intensifies the Fenton process by generation of additional free radicals. Also, the turbulence produced during the hydrodynamic cavitation process increases the mass transfer rates as well as providing better contact between the pseudo-catalyst surfaces and the reactants. A multivariate design of experiments has been used to ascertain the influence of hydrogen peroxide dosage and iron catalyst loadings on the oxidation performance of the modified AFP. High er TOC removal rates were achieved with increased concentrations of hydrogen peroxide. In contrast, the effect of catalyst loadings was less important on the TOC removal rate under conditions used in this work although there is an optimum value of this parameter. The concentration of iron species in the reaction solution was measured at 105 min and its relationship with the catalyst loadings and hydrogen peroxide level is presented.
Resumo:
Proteomic tools-in particular, mass spectrometry (MS)-have advanced significantly in recent years, and the identification of proteins within complex mixtures is now a routine procedure. Quantitative methods of analysis are less well advanced and continue to develop. These include the use of stable isotope ratio approaches, isotopically labeled peptide standards, and nonlabeling methods. This paper summarizes the use of MS as a proteomics tool to identify and semiquantify proteins and their modified forms by using examples of relevance to the Maillard reaction. Finally, some challenges for the future are presented.
Resumo:
In this work a method for building multiple-model structures is presented. A clustering algorithm that uses data from the system is employed to define the architecture of the multiple-model, including the size of the region covered by each model, and the number of models. A heating ventilation and air conditioning system is used as a testbed of the proposed method.
Resumo:
Recent studies showed that features extracted from brain MRIs can well discriminate Alzheimer’s disease from Mild Cognitive Impairment. This study provides an algorithm that sequentially applies advanced feature selection methods for findings the best subset of features in terms of binary classification accuracy. The classifiers that provided the highest accuracies, have been then used for solving a multi-class problem by the one-versus-one strategy. Although several approaches based on Regions of Interest (ROIs) extraction exist, the prediction power of features has not yet investigated by comparing filter and wrapper techniques. The findings of this work suggest that (i) the IntraCranial Volume (ICV) normalization can lead to overfitting and worst the accuracy prediction of test set and (ii) the combined use of a Random Forest-based filter with a Support Vector Machines-based wrapper, improves accuracy of binary classification.
Resumo:
While several privacy protection techniques are pre- sented in the literature, they are not complemented with an established objective evaluation method for their assess- ment and comparison. This paper proposes an annotation- free evaluation method that assesses the two key aspects of privacy protection that are privacy and utility. Unlike some existing methods, the proposed method does not rely on the use of subjective judgements and does not assume a spe- cific target type in the image data. The privacy aspect is quantified as an appearance similarity and the utility aspect is measured as a structural similarity between the original raw image data and the privacy-protected image data. We performed an extensive experimentation using six challeng- ing datasets (including two new ones) to demonstrate the effectiveness of the evaluation method by providing a per- formance comparison of four state-of-the-art privacy pro- tection techniques.
Resumo:
Aim: The aim of this randomized, controlled, clinical study was to compare two surgical techniques with the acellular dermal matrix graft (ADMG) to evaluate which technique could provide better root coverage. Material and Methods: Fifteen patients with bilateral Miller Class I gingival recession areas were selected. In each patient, one recession area was randomly assigned to the control group, while the contra-lateral recession area was assigned to the test group. The ADMG was used in both groups. The control group was treated with a broader flap and vertical-releasing incisions, and the test group was treated with the proposed surgical technique, without releasing incisions. The clinical parameters evaluated before the surgeries and after 12 months were: gingival recession height, probing depth, relative clinical attachment level and the width and thickness of keratinized tissue. Results: There were no statistically significant differences between the groups for all parameters at baseline. After 12 months, there was a statistically significant reduction in recession height in both groups, and there was no statistically significant difference between the techniques with regard to root coverage. Conclusions: Both surgical techniques provided significant reduction in gingival recession height after 12 months, and similar results in relation to root coverage.
Resumo:
The morphology of the ovaries in Uca rapax (Smith, 1870) was described based on macroscopic and microscopic analysis. Females were collected in Itamambuca mangrove, Ubatuba, state of São Paulo, Brazil. In the laboratory, 18 females had their ovaries removed and prepared for histology. Each gonad developmental stage was previously determined based on external and macroscopic morphology and afterwards each stage was microscopically described. The ovaries of U. rapax showed a pronounced macroscopic differentiation in size and coloration with the maturation of the gonad, with six ovarian developmental stages: immature, rudimentary, developing, developed, advanced and spent. During the vitellogenesis, the amount of oocytes in secondary stage increases in the ovary, resulting in a change in coloration of the gonad. Oogonias, primary oocytes, secondary oocytes and follicular cells were histologically described and measured. In female's ovaries of U. rapax the modifications observed in the oocytes during the process of gonad maturation are similar to descriptions of gonads of other females of brachyuran crustaceans. The similarities are specially found in the morphological changes in the reproductive cells, and also in the presence and arrange of follicle cells during the process of ovary maturation. When external morphological characteristics of the gonads were compared to histological descriptions, it was possible to observe modifications that characterize the process in different developmental stages throughout the ovarian cycle and, consequently, the macroscopic classification of gonad stages agree with the modifications of the reproductive cells.