984 resultados para advanced oxidation processes
Resumo:
In this work the adsorption mechanisms of atomic and molecular oxygen on Cu(100) surface are studied using ab initio simulation methods. Through the atomistic scale under-standing of the elementary oxidation processes we can further understand the large-scale oxidation. Copper is a material widely used in industry which makes it an interesting subject, and also understanding the oxidation of copper helps us understand the oxidation mechanism of other metals. First we have a look on some theory on surface alloys in general and behaviour of Ag on Cu(100) surface. After that the physical background there is behind the methods of density functional calculations are discussed, and some methods, namely potential energy surfaces and molecular dynamics, are introduced. Then there is a brief look on the numerical details used in the calculations, and after that, the results of the simulations are exhibited.
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).
Resumo:
"Live High-Train Low" (LHTL) training can alter oxidative status of athletes. This study compared prooxidant/antioxidant balance responses following two LHTL protocols of the same duration and at the same living altitude of 2250 m in either normobaric (NH) or hypobaric (HH) hypoxia. Twenty-four well-trained triathletes underwent the following two 18-day LHTL protocols in a cross-over and randomized manner: Living altitude (PIO2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg in NH and HH, respectively); training "natural" altitude (~1000-1100 m) and training loads were precisely matched between both LHTL protocols. Plasma levels of oxidative stress [advanced oxidation protein products (AOPP) and nitrotyrosine] and antioxidant markers [ferric-reducing antioxidant power (FRAP), superoxide dismutase (SOD) and catalase], NO metabolism end-products (NOx) and uric acid (UA) were determined before (Pre) and after (Post) the LHTL. Cumulative hypoxic exposure was lower during the NH (229 ± 6 hrs.) compared to the HH (310 ± 4 hrs.; P<0.01) protocol. Following the LHTL, the concentration of AOPP decreased (-27%; P<0.01) and nitrotyrosine increased (+67%; P<0.05) in HH only. FRAP was decreased (-27%; P<0.05) after the NH while was SOD and UA were only increased following the HH (SOD: +54%; P<0.01 and UA: +15%; P<0.01). Catalase activity was increased in the NH only (+20%; P<0.05). These data suggest that 18-days of LHTL performed in either NH or HH differentially affect oxidative status of athletes. Higher oxidative stress levels following the HH LHTL might be explained by the higher overall hypoxic dose and different physiological responses between the NH and HH.
Resumo:
Independently, both inactivity and hypoxia augment oxidative stress. This study, part of the FemHab project, investigated the combined effects of bed rest-induced unloading and hypoxic exposure on oxidative stress and antioxidant status. Healthy, eumenorrheic women were randomly assigned to the following three 10-day experimental interventions: normoxic bed rest (NBR;n= 11; PiO2 = 133 mmHg), normobaric hypoxic bed rest (HBR;n= 12; PiO2 = 90 mmHg), and ambulatory hypoxic confinement (HAMB;n= 8: PiO2 = 90 mmHg). Plasma samples, obtained before (Pre), during (D2, D6), immediately after (Post) and 24 h after (Post+1) each intervention, were analyzed for oxidative stress markers [advanced oxidation protein products (AOPP), malondialdehyde (MDA), and nitrotyrosine], antioxidant status [superoxide dismutase (SOD), catalase, ferric-reducing antioxidant power (FRAP), glutathione peroxidase (GPX), and uric acid (UA)], NO metabolism end-products (NOx), and nitrites. Compared with baseline, AOPP increased in NBR and HBR on D2 (+14%; +12%;P< 0.05), D6 (+19%; +15%;P< 0.05), and Post (+22%; +21%;P< 0.05), respectively. MDA increased at Post+1 in NBR (+116%;P< 0.01) and D2 in HBR (+114%;P< 0.01) and HAMB (+95%;P< 0.05). Nitrotyrosine decreased (-45%;P< 0.05) and nitrites increased (+46%;P< 0.05) at Post+1 in HAMB only. Whereas SOD was higher at D6 (+82%) and Post+1 (+67%) in HAMB only, the catalase activity increased on D6 (128%) and Post (146%) in HBR and HAMB, respectively (P< 0.05). GPX was only reduced on D6 (-20%;P< 0.01) and Post (-18%;P< 0.05) in HBR. No differences were observed in FRAP and NOx. UA was higher at Post in HBR compared with HAMB (P< 0.05). These data indicate that exposure to combined inactivity and hypoxia impairs prooxidant/antioxidant balance in healthy women. Moreover, habitual activity levels, as opposed to inactivity, seem to blunt hypoxia-related oxidative stress via antioxidant system upregulation.
Resumo:
This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.
Resumo:
The present experiment describes the preparation, characterization of n-butyl(pyridil)cobaloxime complex and its electrochemical property. The infrared and uv-visible absorption spectra were used to characterize the complex obtained. The infrared spectrum of the compound showed characteristics bands that indicated the formation of the Co-C chemical bond formation. The electronic absorption spectrum in acetonitrile showed transition bands attributed to p-p*, metal-to-ligand charge transfer, d-d transitions and charge transfer Co-C. The electrochemical property was investigated by the pulse differential voltammetry technique. Two oxidation processes: Co(I)/Co(II) at -423 mV and Co(II)/Co(III) at 752 mV were observed.
Resumo:
A large variety of organic and inorganic compounds may be found in wastewater which can contribute to environmental contamination. Oxidation processes with ozone (O3; O3/UV; O3/H2O2; O3/TiO2; O3/Mn+2) and the use of ozone in the pre- or post-treatment of wastewater combined with biological processes has been extensively studied for the treatment of effluents. The aim of this work was to evaluate the potential of the ozonation process in the treatment of several industrial wastewaters, namely effluents from paper mills, and textile, whey (dairy industry), pharmaceutic sand pesticides plants.
Resumo:
In a previous work, a hybrid system consisting of an advanced oxidation process (AOP) named Photo-Fenton (Ph-F) and a fixed bed biological treatment operating as a sequencing batch biofilm reactor (SBBR) was started-up and optimized to treat 200 mg·L-1 of 4-chlorophenol (4-CP) as a model compound. In this work, studies of reactor stability and control as well as microbial population determination by molecular biology techniques were carried out to further characterize and control the biological reactor. Results revealed that the integrated system was flexible and even able to overcome toxic shock loads. Oxygen uptake rate (OUR) in situ was shown to be a valid tool to control the SBBR operation, to detect toxic conditions to the biomass, and to assess the recovery of performance. A microbial characterization by 16S rDNA sequence analysis reveals that the biological population was varied, although about 30% of the bacteria belonged to the Wautersia genus.
Resumo:
Advanced oxidative processes (AOPs) are based on chemical processes that can generate free radicals, such as hydroxyl radicals (.OH) which are strong, non-selective oxidant species that react with the vast majority of organic compounds. Nanostructured semiconductors, especially titanium dioxide (TiO2) in the anatase phase, are well-established photocatalysts for this process, which have proved to be useful in the degradation of dyes, pesticides and other contaminants. Research in different strategies for the synthesis of nanostructured semiconductors, with particular characteristic is currently a topic of interest in many studies. Thus, this paper presents a review about various synthesis strategies of nanostructured photocatalysts.
Resumo:
Several problems are involved the treatment plants of textile effluents, mainly the low efficiency of color removal. This paper presents an alternative of post-treatment by UV/H2O2 process, for color removal in biologically treated textile effluents. The tests were performed in a photochemical reactor and samples were taken at different times to perform analyses. Using 250 mgH2O2.L-1, 96% removal of color was verified, indicating the dyes degradation. A reduction of 84% of aromatics compounds, 90% of TSS removal, and a further reduction of the organic fraction were observed, demonstrating that the process is effective as a post-treatment of effluents from textile industries.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
The oxidation potential of pulsed corona discharge concerning aqueous impurities is limited in respect to certain refractory compounds. This may be enhanced in combination of the discharge with catalysis/photocatalysis as developed in homogeneous gas-phase reactions. The objective of the work consists of testing the hypothesis of oxidation potential enhancement in combination of the discharge with TiO2 photocatalysis applied to aqueous solutions of refractory oxalate. Meglumine acridone acetate was included for meeting the practical needs. The experimental research was undertaken into oxidation of aqueous solutions under conditions of various target pollutant concentrations, pH and the pulse repetition rate with plain electrodes and the electrodes with TiO2 attached to their surface. The results showed no positive influence of the photocatalyst, the pollutants were oxidized with the rate identical within the accuracy of measurements. The possible explanation for the observed inefficiency may include low UV irradiance, screening effect of water and generally low oxidation rate in photocatalytic reactions. Further studies might include combination of electric discharge with ozone decomposition/radical formation catalysts.
Resumo:
In tumor-bearing rats, most of the serum amino acids are used for synthesis and oxidation processes by the neoplastic tissue. In the present study, the effect of Walker 256 carcinoma growth on the intestinal absorption of leucine, methionine and glucose was investigated in newly weaned and mature rats. Food intake and carcass weight were decreased in newly weaned (NT) and mature (MT) rats bearing Walker 256 tumor in comparison with control animals (NC and MC). The tumor/carcass weight ratio was higher in NT than in MT rats, whereas nitrogen balance was significantly decreased in both as compared to control animals. Glucose absorption was significantly reduced in MT rats (MT = 47.3 ± 4.9 vs MC = 99.8 ± 5.3 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05) but this fact did not hamper the evolution of cancer. There was a significant increase in methionine absorption in both groups (NT = 4.2 ± 0.3 and MT = 2.0 ± 0.1 vs NC = 3.7 ± 0.1 and MC = 1.2 ± 0.2 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), whereas leucine absorption was increased only in young tumor-bearing rats (NT = 8.6 ± 0.2 vs NC = 7.7 ± 0.4 nmol min-1 cm-1, Kruskal-Wallis test, P<0.05), suggesting that these metabolites are being used for synthesis and oxidation processes by the neoplastic cells, which might ensure their rapid proliferation especially in NT rats.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
Perfluoratut alkyyliyhdisteet eli PFAS-yhdisteet ovat synteettisiä orgaanisia yhdisteitä, joissa on fluorattu hiiliketju. Hiilen ja fluorin väliset vahvat sidokset ovat muodostuneet ongelmaksi jätevedenpuhdistamoilla, sillä yhdisteet eivät hajoa puhdistamoilla käytössä olevilla vedenpuhdistusmenetelmillä. Yhdisteitä kertyy luontoon jätevesien mukana. Kandidaatintyössä on vertailtu yhdisteitä sisältävien vesien käsittelymenetelmiä parhaiten soveltuvan menetelmän löytämiseksi. Menetelmien kustannuksia tai soveltuvuutta vedenpuhdistamomittakaavan prosessiksi ei ole arvioitu. Lisäksi työssä on koottu yhdisteitä sisältävien jätevesien analysointiin sopivia analyysimenetelmiä. Soveltuvat puhdistus- ja analyysimenetelmät on esitelty uusien tieteellisten artikkelien pohjalta. Mahdollisia erotusmenetelmiä ovat membraanierotus ja sorptio. Membraaneista soveltuvimpia ovat nanosuodatus- ja käänteisosmoosimembraanit, joilla erottuvat jopa 0,0001 μm:n kokoiset partikkelit. PFAS-yhdisteet voidaan erottaa sorptiolla muun muassa aktiivihiileen. Yhdisteiden rakenne hajoaa nykyaikaisilla hapetusmenetelmillä ja polttamalla lietteen mukana. Hapettaminen permanganaatin avulla ei tuottanut hyvää tulosta, mutta fotokemiallisella hapetuksella ja alhaisen lämpötilan plasmatekniikalla (NTP) yhdisteiden rakenne hajosi lähes kokonaan. Fotokemiallinen hapetus onnistui erityisesti perfluorokarboksyylihapoilla, joiden rakenne hajosi jopa kolmessa tunnissa. Yleisimmin käytetty analyysimenetelmä on nestekromatografin ja massaspektrometrin yhdistelmä (LC-MS/MS) ja matriisivaikutus minimoidaan tyypillisesti kiinteäfaasiuutolla (SPE). Työssä esitellyistä käsittelymenetelmistä parhaiten soveltuva on NTP-menetelmä, koska sillä saatiin tutkimusten mukaan hajotettua yhdisteiden rakenne muita menetelmiä lyhyemmässä ajassa ja se soveltuu parhaiten kaikille PFAS-yhdisteille. NTP-menetelmässä ei tarvita katalyyttiä tai lisäkemikaaleja. Voimakkaana hapettimena toimivat epästabiilit hydroksyyliradikaalit, jotka syntyvät koronapurkauksen kautta. Koronapurkauksessa muodostuu myös otsonia ja lisäksi vapaa happi voi tehostaa hapettumista. Menetelmässä muodostuvien hajoamistuotteiden hallinta vaatii lisätutkimusta. Mahdollinen hallintakeino voisi olla esimerkiksi hapettumisessa vapautuvien fluoridi-ionien saostaminen. Muodostuvien hajoamistuotteiden toksisuutta voitaisiin tarkkailla biosensorilla.