954 resultados para acyl-chloride metabolite
Resumo:
A liquid chromatography method coupled to mass spectrometry was developed for the quantification of bupropion, its metabolite hydroxy-bupropion, moclobemide, reboxetine and trazodone in human plasma. The validation of the analytical procedure was assessed according to Société Française des Sciences et Techniques Pharmaceutiques and the latest Food and Drug Administration guidelines. The sample preparation was performed with 0.5mL of plasma extracted on a cation-exchange solid phase 96-well plate. The separation was achieved in 14min on a C18 XBridge column (2.1mm×100mm, 3.5μm) using a 50mM ammonium acetate pH 9/acetonitrile mobile phase in gradient mode. The compounds of interest were analysed in the single ion monitoring mode on a single quadrupole mass spectrometer working in positive electrospray ionisation mode. Two ions were selected per molecule to increase the number of identification points and to avoid as much as possible any false positives. Since selectivity is always a critical point for routine therapeutic drug monitoring, more than sixty common comedications for the psychiatric population were tested. For each analyte, the analytical procedure was validated to cover the common range of concentrations measured in plasma samples: 1-400ng/mL for reboxetine and bupropion, 2-2000ng/mL for hydroxy-bupropion, moclobemide, and trazodone. For all investigated compounds, reliable performance in terms of accuracy, precision, trueness, recovery, selectivity and stability was obtained. One year after its implementation in a routine process, this method demonstrated a high robustness with accurate values over the wide concentration range commonly observed among a psychiatric population.
Resumo:
AIMS: To investigate if vaginal application of dequalinium chloride (DQC, Fluomizin®) is as effective as vaginal clindamycin (CLM) in the treatment of bacterial vaginosis (BV). METHODS: This was a multinational, multicenter, single-blind, randomized trial in 15 centers, including 321 women. They were randomized to either vaginal DQC tablets or vaginal CLM cream. Follow-up visits were 1 week and 1 month after treatment. Clinical cure based on Amsel's criteria was the primary outcome. Secondary outcomes were rate of treatment failures and recurrences, incidence of post-treatment vulvovaginal candidosis (VVC), lactobacillary grade (LBG), total symptom score (TSC), and safety. RESULTS: Cure rates with DQC (C1: 81.5%, C2: 79.5%) were as high as with CLM (C1: 78.4%, C2: 77.6%). Thus, the treatment with DQC had equal efficacy as CLM cream. A trend to less common post-treatment VVC in the DQC-treated women was observed (DQC: 2.5%, CLM: 7.7%; p = 0.06). Both treatments were well tolerated with no serious adverse events occurring. CONCLUSION: Vaginal DQC has been shown to be equally effective as CLM cream, to be well tolerated with no systemic safety concerns, and is therefore a valid alternative therapy for women with BV [ClinicalTrials.gov, Med380104, NCT01125410].
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate the expression of many genes involved in lipid metabolism. The biological roles of PPARalpha and PPARgamma are relatively well understood, but little is known about the function of PPARbeta. To address this question, and because PPARbeta is expressed to a high level in the developing brain, we used reaggregated brain cell cultures prepared from dissociated fetal rat telencephalon as experimental model. In these primary cultures, the fetal cells initially form random aggregates, which progressively acquire a tissue-specific pattern resembling that of the brain. PPARs are differentially expressed in these aggregates, with PPARbeta being the prevalent isotype. PPARalpha is present at a very low level, and PPARgamma is absent. Cell type-specific expression analyses revealed that PPARbeta is ubiquitous and most abundant in some neurons, whereas PPARalpha is predominantly astrocytic. We chose acyl-CoA synthetases (ACSs) 1, 2, and 3 as potential target genes of PPARbeta and first analyzed their temporal and cell type-specific pattern. This analysis indicated that ACS2 and PPARbeta mRNAs have overlapping expression patterns, thus designating the ACS2 gene as a putative target of PPARbeta. Using a selective PPARbeta activator, we found that the ACS2 gene is transcriptionally regulated by PPARbeta, demonstrating a role for PPARbeta in brain lipid metabolism.
Resumo:
Regulation of sodium balance is a critical factor in the maintenance of euvolemia, and dysregulation of renal sodium excretion results in disorders of altered intravascular volume, such as hypertension. The amiloride-sensitive epithelial sodium channel (ENaC) is thought to be the only mechanism for sodium transport in the cortical collecting duct (CCD) of the kidney. However, it has been found that much of the sodium absorption in the CCD is actually amiloride insensitive and sensitive to thiazide diuretics, which also block the Na-Cl cotransporter (NCC) located in the distal convoluted tubule. In this study, we have demonstrated the presence of electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists even with genetic disruption of ENaC. Furthermore, hydrochlorothiazide (HCTZ) increased excretion of Na+ and Cl- in mice devoid of the thiazide target NCC, suggesting that an additional mechanism might account for this effect. Studies on isolated CCDs suggested that the parallel action of the Na+-driven Cl-/HCO3- exchanger (NDCBE/SLC4A8) and the Na+-independent Cl-/HCO3- exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-sensitive sodium transport. Furthermore, genetic ablation of SLC4A8 abolished thiazide-sensitive NaCl transport in the CCD. These studies establish what we believe to be a novel role for NDCBE in mediating substantial Na+ reabsorption in the CCD and suggest a role for this transporter in the regulation of fluid homeostasis in mice.
Resumo:
Metabolite profiling is critical in many aspects of the life sciences, particularly natural product research. Obtaining precise information on the chemical composition of complex natural extracts (metabolomes) that are primarily obtained from plants or microorganisms is a challenging task that requires sophisticated, advanced analytical methods. In this respect, significant advances in hyphenated chromatographic techniques (LC-MS, GC-MS and LC-NMR in particular), as well as data mining and processing methods, have occurred over the last decade. Together, these tools, in combination with bioassay profiling methods, serve an important role in metabolomics for the purposes of both peak annotation and dereplication in natural product research. In this review, a survey of the techniques that are used for generic and comprehensive profiling of secondary metabolites in natural extracts is provided. The various approaches (chromatographic methods: LC-MS, GC-MS, and LC-NMR and direct spectroscopic methods: NMR and DIMS) are discussed with respect to their resolution and sensitivity for extract profiling. In addition the structural information that can be generated through these techniques or in combination, is compared in relation to the identification of metabolites in complex mixtures. Analytical strategies with applications to natural extracts and novel methods that have strong potential, regardless of how often they are used, are discussed with respect to their potential applications and future trends.
Resumo:
The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogen.
Resumo:
Polycystic kidney diseases result from disruption of the genetically defined program that controls the size and geometry of renal tubules. Cysts which frequently arise from the collecting duct (CD) result from cell proliferation and fluid secretion. From mCCD(cl1) cells, a differentiated mouse CD cell line, we isolated a clonal subpopulation (mCCD-N21) that retains morphogenetic capacity. When grown in three-dimensional gels, mCCD-N21 cells formed highly organized tubular structures consisting of a palisade of polarized epithelial cells surrounding a cylindrical lumen. Subsequent addition of cAMP-elevating agents (forskolin or cholera toxin) or of membrane-permeable cAMP analogs (CPT-cAMP) resulted in rapid and progressive dilatation of existing tubules, leading to the formation of cystlike structures. When grown on filters, mCCD-N21 cells exhibited a high transepithelial resistance as well as aldosterone- and/or vasopressin-induced amiloride-sensitive and -insensitive current. The latter was in part inhibited by Na(+)-K(+)-2Cl(-) cotransporter (bumetanide) and chloride channel (NPPB) inhibitors. Real-time PCR analysis confirmed the expression of NKCC1, the ubiquitous Na(+)-K(+)-2Cl(-) cotransporter and cystic fibrosis transmembrane regulator (CFTR) in mCCD-N21 cells. Tubule enlargement and cyst formation were prevented by inhibitors of Na(+)-K(+)-2Cl(-) cotransporters (bumetanide or ethacrynic acid) or CFTR (NPPB or CFTR inhibitor-172). These results further support the notion that cAMP signaling plays a key role in renal cyst formation, at least in part by promoting chloride-driven fluid secretion. This new in vitro model of tubule-to-cyst conversion affords a unique opportunity for investigating the molecular mechanisms that govern the architecture of epithelial tubes, as well as for dissecting the pathophysiological processes underlying cystic kidney diseases.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
The great difficulty of incorporation of N fertilizers into the "green sugarcane" system causes concern and since urea is the most commonly used source, there is the risk of loosing NH3 through volatilization. For this reason, a field experiment was undertaken (in a Hapludox Typic) with the objective of evaluating the agronomic efficiency of ammonium chloride on stubble of the second ratoon (SP89 1115), as well as its residual effect on the subsequent cycle (third ratoon). The experimental design was randomized blocks with four replications. Treatments consisted of three N rates (60, 120 and 180 kg ha-1 N) in the form of NH4Cl, in addition to a control treatment without the addition of N fertilizer. The ratoon cane of the second cutting was harvested in November 2006 and the treatments were applied in December 2006. The second ratoon was harvested mechanically in November 2007 and in December 2007, 450 kg ha-1 of the NPK mixture 20-05-19 was applied, providing 90, 22 and 86 kg ha-1 N, P2O5 and K2O, respectively, for the purpose of evaluating the effect of residual-N from the treatments implanted in December 2006. An increase in the rates of N-NH4Cl had a positive effect on the leaf concentrations of P, Mg and S. Stalk yield (MSS - Mg ha-1 of sugarcane stalks) and sugar (MSH - Mg ha-1 of sucrose) in the November 2006 harvest responded linearly to the increase of N doses in the form of NH4Cl. In relation to the effect of residual-N in the 2007/2008 harvest, it was observed, in general, that the concentrations of macronutrients in the sugarcane leaf +1 were within the range considered adequate in the state of São Paulo, Brazil. The residual-N of the NH4Cl doses resulted in a significant reduction in stalk (MSS) and sugar (MSH) production. It may be concluded that the NH4Cl source at a dose of 120 kg ha-1 N in ratoon fertilization of the second cutting was agronomically efficient, presenting, however, less efficiency of residual-N in the subsequent cycle.
Resumo:
The induction of fungal metabolites by fungal co-cultures grown on solid media was explored using multi-well co-cultures in 2 cm diameter Petri dishes. Fungi were grown in 12-well plates to easily and rapidly obtain the large number of replicates necessary for employing metabolomic approaches. Fungal culture using such a format accelerated the production of metabolites by several weeks compared with using the large-format 9 cm Petri dishes. This strategy was applied to a co-culture of a Fusarium and an Aspergillus strain. The metabolite composition of the cultures was assessed using ultra-high pressure liquid chromatography coupled to electrospray ionisation and time-of-flight mass spectrometry, followed by automated data mining. The de novo production of metabolites was dramatically increased by nutriment reduction. A time-series study of the induction of the fungal metabolites of interest over nine days revealed that they exhibited various induction patterns. The concentrations of most of the de novo induced metabolites increased over time. However, interesting patterns were observed, such as with the presence of some compounds only at certain time points. This result indicates the complexity and dynamic nature of fungal metabolism. The large-scale production of the compounds of interest was verified by co-culture in 15 cm Petri dishes; most of the induced metabolites of interest (16/18) were found to be produced as effectively as on a small scale, although not in the same time frames. Large-scale production is a practical solution for the future production, identification and biological evaluation of these metabolites.