910 resultados para active and exo-site binding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two year record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean in the framework of the EUMELI program. Settling particles were collected with multisample conical sediment-traps moored at 1000 and 2500 depths in the water column. Time-series samples were obtained between February 1991 and November 1992. During this time, sampling intervals varied from 8 to 10 d and were synchronized at all depths and also between the oligotrophic and mesotrophic moorings. Sediment-trap sampling procedures were consistent with JGOF and described elsewhere. The data shown here are mass, particulate organic carbon (POC), particulate inorganic carbon (PIC), coccolithophore, opal, and lithogenic downward fluxes obtained during the entire sediment-trap deployments at both sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome of the Gram-negative bacterium Pseudomonas putida harbours a complete set of xcp genes for a type II protein secretion system (T2SS). This study shows that expression of these genes is induced under inorganic phosphate (Pi ) limitation and that the system enables the utilization of various organic phosphate sources. A phosphatase of the PhoX family, previously designated UxpB, was identified, which was produced under low Pi conditions and transported across the cell envelope in an Xcp-dependent manner demonstrating that the xcp genes encode an active T2SS. The signal sequence of UxpB contains a twin-arginine translocation (Tat) motif as well as a lipobox, and both processing by leader peptidase II and Tat dependency were experimentally confirmed. Two different tat gene clusters were detected in the P.?putida genome, of which one, named tat-1, is located adjacent to the uxpB and xcp genes. Both Tat systems appeared to be capable of transporting the UxpB protein. However, expression of the tat-1 genes was strongly induced by low Pi levels, indicating a function of this system in survival during Pi starvation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome of the Gram-negative bacterium Pseudomonas putida harbours a complete set of xcp genes for a type II protein secretion system (T2SS). This study shows that expression of these genes is induced under inorganic phosphate (Pi ) limitation and that the system enables the utilization of various organic phosphate sources. A phosphatase of the PhoX family, previously designated UxpB, was identified, which was produced under low Pi conditions and transported across the cell envelope in an Xcp-dependent manner demonstrating that the xcp genes encode an active T2SS. The signal sequence of UxpB contains a twin-arginine translocation (Tat) motif as well as a lipobox, and both processing by leader peptidase II and Tat dependency were experimentally confirmed. Two different tat gene clusters were detected in the P.?putida genome, of which one, named tat-1, is located adjacent to the uxpB and xcp genes. Both Tat systems appeared to be capable of transporting the UxpB protein. However, expression of the tat-1 genes was strongly induced by low Pi levels, indicating a function of this system in survival during Pi starvation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond.