927 resultados para ZnO Microflowers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO/Si heterojunctions were fabricated by growing ZnO thin films on p-type Si (100) substrate by pulsed laser deposition without buffer layers. The crystallinity of the heterojunction was analyzed by high resolution X-ray diffraction and atomic force microscopy. The optical quality of the film was analyzed by room temperature (RT) photoluminescence measurements. The high intense band to band emission confirmed the high quality of the ZnO thin films on Si. The electrical properties of the junction were studied by temperature dependent current-voltage measurements and RT capacitance-voltage (C-V) analysis. The charge carrier concentration and the barrier height (BH) were calculated, to be 5.6x10(19) cm(-3) and 0.6 eV respectively from the C-V plot. The BH and ideality factor, calculated using the thermionic emission (TE) model, were found to be highly temperature dependent. We observed a much lower value in Richardson constant, 5.19x10(-7)A/cm(2) K-2 than the theoretical value (32 A/cm(2) K-2) for ZnO. This analysis revealed the existence of a Gaussian distribution (GD) with a standard deviation of sigma(2)=0.035 V. By implementing the GD to the TE, the values of BH and Richardson constant were obtained as 1.3 eV and 39.97 A/cm(2) K-2 respectively from the modified Richardson plot. The obtained Richardson constant value is close to the theoretical value for n-ZnO. These high quality heterojunctions can be used for solar cell applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of defects on laser-excited photoluminescence of various ZnO nanostructures has been investigated. The study shows that defects present in ZnO nanostructures, specially Zn-related defects play a crucial role in determining the laser-excited photoluminescence intensity (LEI). ZnO nanoparticles as well as nanorods (NR) annealed in oxygen atmosphere exhibit remarkable enhancement in LEI. A similar enhancement is also shown by Al-doped ZnO NR. © 2012 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present work describes the characterization of commercially available ZnO and its electrochemical investigation of dopamine in the presence of ascorbic acid. ZnO was characterized by powder XRD, UV-visible absorption, fluorescence, infrared spectroscopy and scanning electron microscopy. The carbon paste electrode was modified with ZnO and ZnO/polyglycine for further electrochemical investigation of dopamine. The modified electrode shows good electrocatalytic activity towards the detection of dopamine with a reduction in overpotential. The ZnO/polyglycine modified carbon paste electrode (CPE/ZnO/Pgl) shows excellent electrochemical enhancement of peak currents for both dopamine (DA) and ascorbic acid (AA) and for simultaneous detection of DA in the presence of high concentrations of AA with 0.214 V oxidation peak potential differences between them at pH 7.4. From the scan rate variation and concentration, the oxidation of DA and AA was found to be adsorption-controlled. The use of CPE/ZnO/Pgl is demonstrated for the detection of DA in blood serum and injection samples. This journal is © The Royal Society of Chemistry 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of defects on laser-excited photoluminescence of various ZnO nanostructures has been investigated. The study shows that defects present in ZnO nanostructures, specially Zn-related defects play a crucial role in determining the laser-excited photoluminescence intensity (LEI). ZnO nanoparticles as well as nanorods (NR) annealed in oxygen atmosphere exhibit remarkable enhancement in LEI. A similar enhancement is also shown by Al-doped ZnO NR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-standing ZnO nanocrystals simultaneously doped with Fe and Cu with varying Fe/Cu compositions have been synthesized using colloidal methods with a mean size of similar to 7.7 nm. Interestingly, while the Cu-doped ZnO nanocrystal remains diamagnetic and Fe-doped samples show antiferromagnetic interactions between Fe sites without any magnetic ordering down to the lowest temperature investigated, samples doped simultaneously with Fe and Cu show a qualitative departure in exhibiting ferromagnetic interactions, with suggestions of ferromagnetic order at low temperature. XAS measurements establish the presence of Fe2+ and Fe3+ ions, with the concentration of the trivalent species increasing in the presence of Cu doping, providing direct evidence of the Fe2+ + Cu2+ sic Fe3+ + Cu+ redox couple being correlated with the ferromagnetic property. Using DFT, the unexpected ferromagnetic nature of these systems is explained in terms of a double exchange between Fe atoms, mediated by the Cu atom, in agreement with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed low temperature magneto-transport study is carried out to understand the transport mechanism in pure and Co doped ZnO thin films grown by pulsed laser deposition (PLD) technique. A negative transverse magneto-resistance (MR) (with a value similar to 4% at 4.5 K) which decreases monotonically with the increase in temperature, is observed for the undoped ZnO film. A competition between positive and negative MR is observed for the Co doped ZnO samples. In this case at higher field values negative MR contribution dominates over the positive MR, which gives rise to a slope change in the MR data. Our data for MR shows excellent agreement with the semi-empirical formula given by Khosla et al., which is originally proposed for the degenerate semiconductors. This formula incorporates the third order perturbation expansion of the s-d exchange scattering of the conduction electrons from the localised spins. We have also obtained the Hall mobility, carrier conc. and mean free path as function of temperature for the pure ZnO film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the novel flow sensing application of piezoelectric ZnO thin film deposited on Phynox alloy sensing element. Characterization of piezoelectric ZnO films deposited on Phynox (Elgiloy) substrate at different RF powers is discussed. ZnO films deposited at RF power of 100W were found to have fine c-axis orientation, possesses excellent surface morphology with lower rms surface roughness of 1.87 nm and maximum d(31) coefficient value 4.7 pm V-1. The thin cantilever strip of Phynox alloy with ZnO film as a sensing layer for flow sensing has been tested for flow rates ranging from 2 to 18 L min(-1). A detailed theoretical analysis of the experimental set-up showing the relationship between output voltage and force at a particular flow rate has been discussed. The sensitivity of now sensing element is similar to 18 mV/(L min(-1)) and typical response time is of the order of 20 m s. The sensing element is calibrated using in-house developed testing set-up. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we report the ZnO/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) based photodetectors that can response to ultraviolet as well as visible light. The temporal response of the heterostructures for various excitations in the ultraviolet (UV) and visible range are performed. The time constants are found to be excitation-dependent, the response to visible light is better as compared to UV. The reason behind the better response to UV light is the high level of defects present in ZnO as confirmed by the photoluminescence (PL) measurements. This is corroborated by the time resolved fluorescence (TRF) measurements which provides sufficient information behind the slow response time under the UV excitations. The possible explanation being the non-radiative recombinations occurring due to the traps or impurities present in the film which slows down the photoresponse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically clear glasses in the ZnO-Bi2O3-B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz-10 MHz)-independent dielectric characteristics associated with significantly low loss (D = 0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18 +/- 4 ppm A degrees C-1 in the 35-250 A degrees C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and co-doped (Ag, Co) ZnO powders were synthesized by chemical co-precipitation method without using any capping agent. The X-ray diffraction results indicate that the undoped and co-doped ZnO powders have pure hexagonal structure and are consisting of nanosized single-crystalline particles. The size of the nanoparticles increases with increasing Ag concentration from 1 to 5 mol% as compared to that of undoped ZnO. The presence of substitution dopants of Ag and Co in the ZnO host material was confirmed by the Energy dispersive analysis of X-rays (EDAX). Optical absorption measurements indicate blue shift and red-shift in the absorption band edge upon doping concentration of Ag and blue emission was observed by photoluminescence (PL) studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of CdSe and ZnO nanocrystals with electron-donating tetrathiafulvalene (TTF) and electron-withdrawing tetracyanoethylene (TCNE) has been investigated. Isothermal calorimetry shows CdSe nanocrystals interact more strongly with TCNE than TTF. Interaction of larger CdSe nanocrystals with TCNE causes a red-shift in the band-edge emission because of agglomeration, while the smaller CdSe nanocrystals, exhibiting stronger interaction with TCNE modify the optical gap of the nanocrystal. Luminescence of CdSe gets quenched sharply after addition of both TTF and TCNE. ZnO nanocrystals also exhibit luminescence quenching to lesser extent. Defect-emission of ZnO nanocrystals gets red or blue-shifted after interaction with TTF or TCNE respectively. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.