975 resultados para Zika virus--Congresses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak disease is a severe agricultural problem in Africa and the development of maize genotypes resistant to the causal agent, Maize streak virus (MSV), is a priority. A transgenic approach to engineering MSV-resistant maize was developed and tested in this study. A pathogen-derived resistance strategy was adopted by using targeted deletions and nucleotide-substitution mutants of the multifunctional MSV replication-associated protein gene (rep). Various rep gene constructs were tested for their efficacy in limiting replication of wild-type MSV by co-bombardment of maize suspension cells together with an infectious genomic clone of MSV and assaying replicative forms of DNA by quantitative PCR. Digitaria sanguinalis, an MSV-sensitive grass species used as a model monocot, was then transformed with constructs that had inhibited virus replication in the transient-expression system. Challenge experiments using leafhopper-transmitted MSV indicated significant MSV resistance - from highly resistant to immune - in regenerated transgenic D. sanguinalis lines. Whereas regenerated lines containing a mutated full-length rep gene displayed developmental and growth defects, those containing a truncated rep gene both were fertile and displayed no growth defects, making the truncated gene a suitable candidate for the development of transgenic MSV-resistant maize. © 2007 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A baculovirus-insect cell expression system potentially provides the means to produce prophylactic HIV-1 virus-like particle (VLP) vaccines inexpensively and in large quantities. However, the system must be optimized to maximize yields and increase process efficiency. In this study, we optimized the production of two novel, chimeric HIV-1 VLP vaccine candidates (GagRT and GagTN) in insect cells. This was done by monitoring the effects of four specific factors on VLP expression: these were insect cell line, cell density, multiplicity of infection (MOI), and infection time. The use of western blots, Gag p24 ELISA, and four-factorial ANOVA allowed the determination of the most favorable conditions for chimeric VLP production, as well as which factors affected VLP expression most significantly. Both VLP vaccine candidates favored similar optimal conditions, demonstrating higher yields of VLPs when produced in the Trichoplusia ni Pro insect cell line, at a cell density of 1 × 106 cells/mL, and an infection time of 96 h post infection. It was found that cell density and infection time were major influencing factors, but that MOI did not affect VLP expression significantly. This work provides a potentially valuable guideline for HIV-1 protein vaccine optimization, as well as for general optimization of a baculovirus-based expression system to produce complex recombinant proteins. © 2009 American Institute of Chemical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Panicum streak virus (PanSV; Family Geminiviridae; Genus Mastrevirus) is a close relative of Maize streak virus (MSV), the most serious viral threat to maize production in Africa. PanSV and MSV have the same leafhopper vector species, largely overlapping natural host ranges and similar geographical distributions across Africa and its associated Indian Ocean Islands. Unlike MSV, however, PanSV has no known economic relevance. Results: Here we report on 16 new PanSV full genome sequences sampled throughout Africa and use these together with others in public databases to reveal that PanSV and MSV populations in general share very similar patterns of genetic exchange and geographically structured diversity. A potentially important difference between the species, however, is that the movement of MSV strains throughout Africa is apparently less constrained than that of PanSV strains. Interestingly the MSV-A strain which causes maize streak disease is apparently the most mobile of all the PanSV and MSV strains investigated. Conclusion: We therefore hypothesize that the generally increased mobility of MSV relative to other closely related species such as PanSV, may have been an important evolutionary step in the eventual emergence of MSV-A as a serious agricultural pathogen. The GenBank accession numbers for the sequences reported in this paper are GQ415386-GQ415401. © 2009 Varsani et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main cis-acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem-loop structure at the origin of virion-strand replication, and upstream of the rep gene TATA box (the rep-proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can trans-replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 106 peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 106 PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 106 PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-γ responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-γ response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials. © 2008 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombinationdependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR. © 2010 SGM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is overwhelming evidence that persistent infection with high-risk human papillomaviruses (HR-HPV) is the main risk factor for invasive cancer of the cervix. Due to this global public health burden, two prophylactic HPV L1 virus-like particles (VLP) vaccines have been developed. While these vaccines have demonstrated excellent type-specific prevention of infection by the homologous vaccine types (high and low risk HPV types), no data have been reported on the therapeutic effects in people already infected with the low-risk HPV type. In this study we explored whether regression of CRPV-induced papillomas could be achieved following immunisation of out-bred New Zealand White rabbits with CRPV VLPs. Rabbits immunised with CRPV VLPs had papillomas that were significantly smaller compared to the negative control rabbit group (P ≤ 0.05). This data demonstrates the therapeutic potential of PV VLPs in a well-understood animal model with potential important implications for human therapeutic vaccination for low-risk HPVs. © 2008 Govan et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beak and feather disease virus (BFDV), the causative agent of psittacine beak and feather disease (PBFD) infects psittaciformes worldwide. We provide an annotated sequence record of three full-length unique genomes of BFDV isolates from budgerigars (Melopsittacus undulatus) from a breeding farm in South Africa. The isolates share >99% nucleotide sequence identity with each other and ~96% nucleotide sequence identity to two recent isolates (Melopsittacus undulatus) from Thailand but only between 91. 6 and 86. 6% identity with all other full-length BFDV sequences. Maximum-likelihood analysis and recombination analysis suggest that the South African budgerigar BFDV isolates are unique to budgerigars, are non-recombinant in origin, and represent a new genotype of BFDV. © 2010 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. Taxonomy: The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. Physical properties: MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 × 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. Disease symptoms: In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: Infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease control: Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maiz genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. Useful websites: 〈http://www.mcb.uct.ac.za/MSV/mastrevirus.htm〉; 〈http://www. danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus. htm〉. © 2009 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa. © 2011, American Society for Microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of vaccine strategies against human papillomavirus (HPV), which causes cervical cancer, is a priority. We investigated the use of virus-like particles (VLPs) of the most prevalent type, HPV-16, as carriers of foreign proteins. Green fluorescent protein (GFP) was fused to the N or C terminus of both L1 and L2, with L2 chimeras being co-expressed with native L1. Purified chimaeric VLPs were comparable in size (∼55 nm) to native HPV VLPs. Conformation-specific monoclonal antibodies (Mabs) bound to the VLPs, thereby indicating that they possibly retain their antigenicity. In addition, all of the VLPs encapsidated DNA in the range of 6-8 kb. © 2007 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psittacine beak and feather disease (PBFD) has a broad host range and is widespread in wild and captive psittacine populations in Asia, Africa, the Americas, Europe and Australasia. Beak and feather disease circovirus (BFDV) is the causative agent. BFDV has an ~2 kb single stranded circular DNA genome encoding just two proteins (Rep and CP). In this study we provide support for demarcation of BFDV strains by phylogenetic analysis of 65 complete genomes from databases and 22 new BFDV sequences isolated from infected psittacines in South Africa. We propose 94% genome-wide sequence identity as a strain demarcation threshold, with isolates sharing > 94% identity belonging to the same strain, and strain subtypes sharing> 98% identity. Currently, BFDV diversity falls within 14 strains, with five highly divergent isolates from budgerigars probably representing a new species of circovirus with three strains (budgerigar circovirus; BCV-A, -B and -C). The geographical distribution of BFDV and BCV strains is strongly linked to the international trade in exotic birds; strains with more than one host are generally located in the same geographical area. Lastly, we examined BFDV and BCV sequences for evidence of recombination, and determined that recombination had occurred in most BFDV and BCV strains. We established that there were two globally significant recombination hotspots in the viral genome: the first is along the entire intergenic region and the second is in the C-terminal portion of the CP ORF. The implications of our results for the taxonomy and classification of circoviruses are discussed. © 2011 SGM.