977 resultados para Yeast function complementation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiolipin and its precursor phosphatidylglycerol, phospholipids found uniquely in membranes engaged in oxidative phosphorylation, play important roles in multimeric complexes of the energy transducing system (ETS) associated with the inner mitochondrial membrane. A combined molecular genetic and biochemical approach was used to more precisely define the role of cardiolipin in cell processes. ^ Strains of yeast Saccharomyces cerevisiae unable to synthesize cardiolipin because of the crd1Δ allele (encodes cardiolipin synthase) with different phenotypes were analyzed to determine which phenotypes are due to lack of cardiolipin. We concluded that many of the severe phenotypes ascribed to cells lacking cardiolipin, particularly when grown at 37°C, are because of the synergistic interaction of the crd1Δ mutation with the reduced expression of the PET56 gene which encodes a component essential for the formation of functional mitochondrial ribosomes. We also demonstrate that much of the reduced mitochondrial function in crd1Δ is because of reduced expression of ETS components at elevated temperature. ^ A crd1Δ mutant of S. cerevisiae has less severe physiological changes than strains lacking both phosphatidylglycerol and cardiolipin due to an increased level of phosphatidylglycerol, which might partially substitute for the cardiolipin-requiring functions. By varying the level of cardiolipin, we were able to correlate phenotypes in a dose-dependent manner with the level of cardiolipin to support more strongly an involvement of cardiolipin in a particular cellular process. There is almost complete lack of a supercomplex composed of cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) in extracts of cardiolipin-lacking mitochondria when compared to wild type cells and the level of supercomplex varies in proportion to the cardiolipin levels. Reduced cardiolipin levels also compromise the growth properties of yeast in a dose-dependent manner suggesting that the loss in growth efficiency is related to a role of cardiolipin that cannot be replaced by phosphatidylglycerol. An independent kinetic approach was performed to compare organization of the respiratory chain in wild-type and cardiolipin-lacking mitochondria. Cardiolipin-lacking mitochondria display kinetic properties for electron transfer between complexes III and IV via cytochrome c consistent with cytochrome c being a freely diffusible carrier, confirming complexes III and IV exist as individual complexes and not associated into a supercomplex in cardiolipin-lacking mitochondria. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynein light chain 1 (DLC1) is a highly conserved and ubiquitously expressed protein which might have critical cellular function as total loss of DLC1 caused Drosophila embryonic death. Despite many proteins and RNAs interaction with it identified, DLC1's function(s) and regulation are largely unknown. Recently, DLC1 was identified as a physiological substrate of P21-activate kinase 1(Pak1) kinase from a human mammary cDNA library in a yeast-2-hybridization screening assay. Studies in primary human tumors and cell culture implicated that DLC1 could promote mammary cancerous phenotypes, and more importantly, Ser88 phosphorylation of DLC1by Pak1 kinase was found to be essential for DLC1's tumorigenic activities. Based on the above tissue culture studies, we hypothesized that Ser88 phosphorylation regulates DLC1. ^ To test this hypothesis, we generated two transgenic mouse models: MMTV-DLC1 and MMTV-DLC1-S88A mice with mammary specific expression of the DLC1 and DLC1-S88A cDNAs. Both of the transgenic mice mammary glands showed rare tumor incidence which indicated DLC1 alone may not be sufficient for tumorigenesis in vivo. However, these mice showed a significant alteration of mammary development. Mammary glands from the MMTV-DLC1 mice had hyperbranching and alveolar hyperplasia, with elevated cell proliferation. Intriguingly, these phenotypes were not seen in the mammary glands from the MMTV-S88A mice. Furthermore, while MMTV-DLC1 glands were normal during involution, MMTV-S88A mice showed accelerated mammary involution with increase apoptosis and altered expression of involution-associated genes. Further analysis of the MMTV-S88A glands showed they had increased steady state level of Bim protein which might be responsible for the early involution. Finally, our in vitro data showed that Ser88 phosphorylation abolished DLC1 dimer and consequently might disturb its interaction with Bim and destabilize Bim. ^ Collectively, our findings provided in vivo evidence that Ser88 phosphorylation of DLC1 can regulate DLC1's function. In addition, Ser88 phosphorylation might be critical for DLC1 dimer-monomer transition. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p21-activated kinase, Shk1, is an essential serine/threonine kinase required for normal cell polarity, proper mating response, and hyperosmotic stress response, in the fission yeast, Schizosaccharomyces pombe. This study has established a novel role for Shk1 as a microtubule regulator in fission yeast and, in addition, characterized a potential biological substrate of Shk1. Cells defective in Shk1 function were found to exhibit malformed interphase and mitotic microtubules, are hypersensitive to the microtubule disrupting drug thiabendazole (TBZ), and are cold sensitive for growth. Microtubule disruption by TBZ results in a significant reduction of Shk1 kinase activity, which is restored after cells are released from the drug, thus providing a correlation between Shk1 kinase activity and active microtubule polymerization. Consistent with a role for Shk1 as a microtubule regulator, GFP-Shk1 fusion proteins localize to interphase microtubules and mitotic microtubule spindles. Furthermore, loss of Tea1, a presumptive microtubule regulator in fission yeast, exacerbates the growth and microtubule defects of cells deficient in Shk1 function, and results in illicit Shk1 localization. Moreover, loss of the Cdc2 inhibitory kinase Wee1, which has been implicated as a mediator of the Shk1 pathway, leads to significant microtubule defects. Intriguingly, Wee1 protein levels are markedly reduced both by partial loss of Shk1 function and by treatment with TBZ. These results suggest that Shk1 is required for proper regulation of microtubule dynamics in fission yeast and may interact with Tea1 and Wee1 in this regulatory process. ^ To further understand Shk1 function in fission yeast, a yeast two-hybrid screen for proteins that interact with the Shk1 catalytic domain was performed. This screen led to the identification of a novel protein, Skb10 (for S&barbelow;hk1 k&barbelow;inase b&barbelow;inding protein 10). Coprecipitation experiments demonstrated that Skb10 associates with Shk1 in S. pombe cells. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The colony shape of four yeast species growing on agar medium wasmeasured for 116 days by image analysis. Initially, all the colonies are circular, with regular edges. The loss of circularity can be quantitatively estimated by the eccentricity index, Ei, calculated as the ratio between their orthogonal vertical and horizontal diameters. Ei can increase from 1 (complete circularity) to a maximum of 1.17–1.30, depending on the species. One colony inhibits its neighbour only when it has reached a threshold area. Then, Ei of the inhibited colony increases proportionally to the area of the inhibitory colony. The initial distance between colonies affects those threshold values but not the proportionality, Ei/area; this inhibition affects the shape but not the total surface of the colony. The appearance of irregularities in the edges is associated, in all the species, not with age but with nutrient exhaustion. The edge irregularity can be quantified by the Fourier index, Fi, calculated by the minimum number of Fourier coefficients that are needed to describe the colony contour with 99% fitness. An ad hoc function has been developed in Matlab v. 7.0 to automate the computation of the Fourier coefficients. In young colonies, Fi has a value between 2 (circumference) and 3 (ellipse). These values are maintained in mature colonies of Debaryomyces, but can reach values up to 14 in Saccharomyces.All the species studied showed the inhibition of growth in facing colony edges, but only three species showed edge irregularities associated with substrate exhaustion. Copyright © 2014 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of spliced leader RNA (SL RNA) in trans-splicing in Caenorhabditis elegans has been studied through a combination of in vitro mutagenesis and in vivo complementation of rrs-1 mutant nematodes, which lack endogenous SL1 RNA. Three classes of mutant SL1 RNAs have been found—those that rescue the lethal phenotype at low concentration of transforming DNA, those that rescue at high but not low concentration, and those that do not rescue at all. These studies showed that some mutations in the otherwise highly conserved 22-nt spliced leader are tolerated for splicing and post-splicing events. A longer spliced leader also can be tolerated but only when present in high copy number. Changes in the first 16 nucleotides result in the appearance of no SL RNA, consistent with the in vitro studies by others showing that the SL1 RNA promoter partly resides within the spliced leader sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Components of cellular stress responses can be identified by correlating changes in stress tolerance with gain or loss of function of defined genes. Previous work has shown that yeast cells deficient in Ppz1 protein phosphatase or overexpressing Hal3p, a novel regulatory protein of unknown function, exhibit increased resistance to sodium and lithium, whereas cells lacking Hal3p display increased sensitivity. These effects are largely a result of changes in expression of ENA1, encoding the major cation extrusion pump of yeast cells. Disruption or overexpression of HAL3 (also known as SIS2) has no effect on salt tolerance in the absence of PPZ1, suggesting that Hal3p might function upstream of Ppz1p in a novel signal transduction pathway. Hal3p is recovered from crude yeast homogenates by using immobilized, bacterially expressed Ppz1p fused to glutathione S-transferase, and it also copurifies with affinity-purified glutathione S-transferase-Ppz1p from yeast extracts. In both cases, the interaction is stronger when only the carboxyl-terminal catalytic phosphatase domain of Ppz1p is expressed. In vitro experiments reveal that the protein phosphatase activity of Ppz1p is inhibited by Hal3p. Overexpression of Hal3p suppresses the reduced growth rate because of the overexpression of Ppz1p and aggravates the lytic phenotype of a slt2/mpk1 mitogen-activated protein kinase mutant (thus mimicking the deletion of PPZ1). Therefore, Hal3p might modulate diverse physiological functions of the Ppz1 phosphatase, such as salt stress tolerance and cell cycle progression, by acting as a inhibitory subunit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the CLN3 gene for Batten disease, the most common inherited neurovisceral storage disease of childhood, was identified in 1995, the function of the corresponding protein still remains elusive. We previously cloned the Saccharomyces cerevisiae homologue to the human CLN3 gene, designated BTN1, which is not essential and whose product is 39% identical and 59% similar to Cln3p. We report that btn1-Δ deletion yeast strains are more resistant to d-(−)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (denoted ANP), a phenotype that is complemented in yeast by the human CLN3 gene. Furthermore, the severity of Batten disease in humans and the degree of ANP resistance in yeast are related when the equivalent amino acid replacements in Cln3p and Btn1p are compared. These results indicate that yeast can be used as a model for the study of Batten disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylases such as human HDAC1 and yeast RPD3 are trichostatin A (TSA)-sensitive enzymes that are members of large, multiprotein complexes. These contain specialized subunits that help target the catalytic protein to histones at the appropriate DNA regulatory element, where the enzyme represses transcription. To date, no deacetylase catalytic subunits have been shown to have intrinsic activity, suggesting that noncatalytic subunits of the deacetylase complex are required for their enzymatic function. In this paper we describe a novel yeast histone deacetylase HOS3 that is relatively insensitive to the histone deacetylase inhibitor TSA, forms a homodimer when expressed ectopically both in yeast and Escherichia coli, and has intrinsic activity when produced in the bacterium. Most HOS3 protein can be found associated with a larger complex in partially purified yeast nuclear extracts, arguing that the HOS3 homodimer may be dissociated from a very large nuclear structure during purification. We also demonstrate, using a combination of mass spectrometry, tandem mass spectrometry, and proteolytic digestion, that recombinant HOS3 has a distinct specificity in vitro for histone H4 sites K5 and K8, H3 sites K14 and K23, H2A site K7, and H2B site K11. We propose that while factors that interact with HOS3 may sequester the catalytic subunit at specific cellular sites, they are not required for HOS3 histone deacetylase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an approach for monitoring protein–protein interactions within intact eukaryotic cells, which should increase our understanding of the regulatory circuitry that controls the proliferation and differentiation of cells and how these processes go awry in disease states such as cancer. Chimeric proteins composed of proteins of interest fused to complementing β-galactosidase (β-gal) deletion mutants permit a novel analysis of protein complexes within cells. In this approach, the β-gal activity resulting from the forced interaction of nonfunctional weakly complementing β-gal peptides (Δα and Δω) serves as a measure of the extent of interaction of the non-β-gal portions of the chimeras. To test this application of lacZ intracistronic complementation, proteins that form a complex in the presence of rapamycin were used. These proteins, FRAP and FKBP12, were synthesized as fusion proteins with Δα and Δω, respectively. Enzymatic β-gal activity served to monitor the formation of the rapamycin-induced chimeric FRAP/FKBP12 protein complex in a time- and dose-dependent manner, as assessed by histochemical, biochemical, and fluorescence-activated cell sorting assays. This approach may prove to be a valuable adjunct to in vitro immunoprecipitation and crosslinking methods and in vivo yeast two-hybrid and fluorescence energy transfer systems. It may also allow a direct assessment of specific protein dimerization interactions in a biologically relevant context, localized in the cell compartments in which they occur, and in the milieu of competing proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical amino acid residues, Arg-16, Arg-157, Lys-168, Glu-198, Thr-242, and Glu-246, of yeast chorismate mutase by aliphatic amino acid residues. The resulting enzymes exhibit the necessity of these residues for catalytic function and provide evidence of their localization at the active site. Unlike some bacterial enzymes, yeast chorismate mutase has highest activity at acidic pH values. Replacement of Glu-246 in the yeast chorismate mutase by glutamine changes the pH optimum for activity of the enzyme from a narrow to a broad pH range. These data suggest that Glu-246 in the catalytic center must be protonated for maximum catalysis and restricts optimal activity of the enzyme to low pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure of cells to protein tyrosine phosphatase (PTP) inhibitors causes an increase in the phosphotyrosine content of many cellular proteins. However, the level at which the primary signaling event is affected is still unclear. We show that Jaks are activated by tyrosine phosphorylation in cells that are briefly exposed to the PTP inhibitor pervanadate (PV), resulting in tyrosine phosphorylation and functional activation of Stat6 (in addition to other Stats). Mutant cell lines that lack Jak1 activity fail to support PV-mediated [or interleukin 4 (IL-4)-dependent] activation of Stat6 but can be rescued by complementation with functional Jak1. The docking sites for both Jak1 and Stat6 reside in the cytoplasmic domain of the IL-4 receptor α-chain (IL-4Rα). The glioblastoma-derived cell lines T98G, GRE, and M007, which do not express the IL-4Rα chain, fail to support Stat6 activation in response to either IL-4 or PV. Complementation of T98G cells with the IL-4Rα restores both PV-mediated and IL-4-dependent Stat6 activation. Murine L929 cells, which do not express the γ common chain of the IL-4 receptor, support PV-mediated but not IL-4-dependent Stat6 activation. Thus, Stat6 activation by PV is an IL-4Rα-mediated, Jak1-dependent event that is independent of receptor dimerization. We propose that receptor-associated constitutive PTP activity functions to down-regulate persistent, receptor-linked kinase activity. Inhibition or deletion of PTP activity results in constitutive activation of cytokine signaling pathways.