970 resultados para Xylose yields
Resumo:
The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Phi(s)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Phi(s) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic. peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Phi(s) approximate to 50%), with the notable exception of the peroxyoxalate reaction (Phi(s) approximate to 60%).
Resumo:
Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of beta-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 +/- A 411.2 U g(-1), while beta-glucosidase production was increased about 2.6-fold, reaching 20.7 +/- A 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis beta-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for beta-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The beta-glucosidase maintained about 95 % of its activity after 26 h in water at 55 A degrees C, with half-lives of 15.7 h at 60 A degrees C and 5.1 h at 65 A degrees C. The presence of xylose during heat treatment at 65 A degrees C protected beta-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 A degrees C. Xylose stimulated beta-glucosidase activity up to 1.7-fold, at 200 mmol L-1. The notable features of both xylanase and beta-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.
Resumo:
The xylose conversion to ethanol by Pichia stipitis was studied. In a first step, the necessity of supplementing the fermentation medium with urea. MgSO(4) x 7H(2)O, and/or yeast extract was evaluated through a 2(3) full factorial design. The simultaneous addition of these three nutritional sources to the fermentation medium, in concentrations of 2.3, 1.0, and 3.0 g/l, respectively, showed to be important to improve the ethanol production in detriment of the substrate conversion to cell. In a second stage, fermentation assays performed in a bioreactor under different K(L)a (volumetric oxygen transfer coefficient) conditions made possible understanding the influence of the oxygen transfer on yeast performance, as well as to define the most suitable range of values for an efficient ethanol production. The most promising region to perform this bioconversion process was found to be between 2.3 and 4.9 h(-1), since it promoted the highest ethanol production results with practically exhaustion of the xylose from the medium. These findings contribute for the development of an economical and efficient technology for large scale production of second generation ethanol. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 degrees C for 90 min.(-) Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Cells of Candida guilliermondii (ATCC 201935) were permeabilised with surfactant treatment (CTAB or Triton X-100) or a freezing-thawing procedure. Treatments were monitored by in situ activities of the key enzymes involved in xylose metabolism, that is, glucose-6-phosphate dehydrogenase (G6PD), xylose reductase (XR) and xylitol dehydrogenase (XD). The permeabilising ability of the surfactants was dependent on its concentration and incubation time. The optimum operation conditions for the permeabilisation of C. guilliermondii with surfactants were 0.41 mM (CTAB) or 2.78 mM (Triton X-100), 30 degrees C, and pH 7 at 200 rpm for 50 min. The maximum permeabilisation measured in terms of the in situ G6PD activity observed was, in order, as follows: CTAB (122.4 +/- 15.7 U/g(cells)) > freezing-thawing, , (54.3 +/- 1.9 U/g(cells)) > Triton X-100 (23.5 +/- 0.0 U/g(cells)). These results suggest that CTAB surfactant is more effective in the permeabilisation of C. guilliermondii cells in comparison to the freezing-thawing and Triton X-100 treatments. Nevertheless, freezing-thawing was the only treatment that allowed measurable in situ XR activity. Therefore, freezing-thawing permeabilised yeast cells could be used as a source of xylose reductase for analytical purposes or for use in biotransformation process such as xylitol preparation from xylose. The level of in situ xylose reductase was found to be 13.2 +/- 0.1 U/g(cells).
Resumo:
Der Suche nach neuen Wirkstoffen für den chemischen Pflanzenschutz kommt insbesondere vor dem Hintergrund der steigenden Weltbevölkerung und weniger zur Verfügung stehenden kulturfähigen Ackerflächen eine stetig wachsende Bedeutung zu. Ziel dieser Arbeit war die Synthese von cyclischen Peptiden und Depsipeptiden, die aufgrund ihrer biologischen Aktivität als potentielle Insektizide für den chemischen Pflanzenschutz in Frage kommen. Darüber hinaus sollten von Kohlenhydraten abgeleitete Katalysatoren zur enantioselektiven Cyanhydrinsynthese entwickelt werden, um einen leichten Zugang zu den Bausteinen der Depsipeptide zu ermöglichen. Als vielversprechender Naturstoff mit insektiziden Eigenschaften gilt das cyclische Pentapeptid Cycloaspeptid E, dessen Totalsynthese in 10 Stufen mit einer Gesamtausbeute von 25% erreicht wurde, sodass die Verbindung für biologische Tests bereitgestellt werden konnte. Zusätzlich gelang die Kristallisation der Verbindung, was eine Röntgenstrukturanalyse ermöglichte. Ein Derivat von Cycloaspeptid E sollte 2-Aminonicotinsäure anstelle von Anthranilsäure enthalten. Die Synthese dieser Verbindung wurde auf drei Wegen versucht. Dabei zeigte sich, dass es bei einer zur Totalsynthese des Naturstoffs analogen Strategie zur quantitativen Bildung eines Diketopiperazins kommt. Auf den anderen Routen ließ sich entweder ein Kupplungsschritt nicht realisieren, oder die Verbindung erwies sich unter den gewählten Bedingungen als instabil. Die Darstellung eines 2-Aminonicotinsäure-Derivats von Cycloaspeptid E bleibt daher weiterhin ein ungelöstes Problem, das weiterer Forschung bedarf. Verticilid A1 ist ein cyclisches Depsipeptid, das aufgrund seiner Bindungsfähigkeit an den Ryanodinrezeptor von Insekten, als Leitstruktur für die Suche nach neuen Insektiziden von Interesse ist. Um zu untersuchen, wie wichtig die Esterbindungen im Molekül für die biologische Aktivität sind, sollte das entsprechende Amid-Derivat und das Cyclodepsipeptid mit nur zwei statt vier Esterbindungen hergestellt werden. Hierbei zeigte sich, dass eine zur Darstellung von Verticilid A1 analoge Syntheseroute zu einer ausgeprägten Epimerisierung führt. Eine lineare Synthese der Derivate endet in der Bildung des Diketopiperazins. Weiterhin wurden zwei neue, zueinander pseudoenantiomere Vanadium(IV)-Katalysatoren auf Basis von D-Glucose einerseits und L-Xylose andererseits dargestellt. Diese lassen sich in fünf bzw. 14 Stufen synthetisieren und liefern in der enantioselektiven Katalyse von Mandelsäurenitril Enantiomerenüberschüsse von 89% bzw. 91% bei hohen Ausbeuten. Zusammenfassend lässt sich feststellen, dass im Rahmen dieser Arbeit die Totalsynthese von Cycloaspeptid E erfolgreich durchgeführt wurde, und die Syntheseversuche von weiteren cyclischen Peptiden wichtige Erkenntnisse für weitere Synthesen lieferten. Mit den beiden hergestellten Vanadium(IV)-Komplexen wurden zwei potente, auf Kohlenhydraten basierende Katalysatoren für die enantioselektive Synthese von Cyanhydrinen entwickelt.
Resumo:
Ethanol from lignocellulosic feedstocks is not currently competitive with corn-based ethanol in terms of yields and commercial feasibility. Through optimization of the pretreatment and fermentation steps this could change. The overall goal of this study was to evaluate, characterize, and optimize ethanol production from lignocellulosic feedstocks by the yeasts Saccharomyces cerevisiae (strain Ethanol Red, ER) and Pichia stipitis CBS 6054. Through a series of fermentations and growth studies, P. stipitis CBS 6054 and S. cerevisiae (ER) were evaluated on their ability to produce ethanol from both single substrate (xylose and glucose) and mixed substrate (five sugars present in hemicellulose) fermentations. The yeasts were also evaluated on their ability to produce ethanol from dilute acid pretreated hydrolysate and enzymatic hydrolysate. Hardwood (aspen), softwood (balsam), and herbaceous (switchgrass) hydrolysates were also tested to determine the effect of the source of the feedstock. P. stipitis produced ethanol from 66-98% of the theoretical yield throughout the fermentation studies completed over the course of this work. S. cerevisiae (ER) was determined to not be ideal for dilute acid pretreated lignocellulose because it was not able to utilize all the sugars found in hemicellulose. S. cerevisiae (ER) was instead used to optimize enzymatic pretreated lignocellulose that contained only glucose monomers. It was able to produce ethanol from enzymatically pretreated hydrolysate but the sugar level was so low (>3 g/L) that it would not be commercially feasible. Two lignocellulosic degradation products, furfural and acetic acid, were evaluated for whether or not they had an inhibitory effect on biomass production, substrate utilization, and ethanol production by P. stipitis and S. cerevisiae (ER). It was determined that inhibition is directly related to the concentration of the inhibitor and the organism. The final phase for this thesis focused on adapting P. stipitis CBS 6054 to toxic compounds present in dilute acid pretreated hydrolysate through directed evolution. Cultures were transferred to increasing concentrations of dilute acid pretreated hydrolysate in the fermentation media. The adapted strains’ fermentation capabilities were tested against the unadapted parent strain at each hydrolysate concentration. The fermentation capabilities of the adapted strain were significantly improved over the unadapted parentstrain. On media containing 60% hydrolysate the adapted strain yielded 0.30 g_ethanol/g_sugar ± 0.033 (g/g) and the unadapted parent strain yielded 0.11 g/g ±0.028. The culture has been successfully adapted to growth on media containing 65%, 70%, 75%, and 80% hydrolysate but with below optimal ethanol yields (0.14-0.19 g/g). Cell recycle could be a viable option for improving ethanol yields in these cases. A study was conducted to determine the optimal media for production of ethanol from xylose and mixed substrate fermentations by P. stipitis. Growth, substrate utilization, and ethanol production were the three factors used to evaluate the media. The three media tested were Yeast Peptone (YP), Yeast Nitrogen Base (YNB), and Corn Steep Liquor (CSL). The ethanol yields (g/g) for each medium are as follows: YP - 0.40-0.42, YNB -0.28-.030, and CSL - 0.44-.051. The results show that media containing CSL result in slightly higher ethanol yields then other fermentation media. P. stipitis was successfully adapted to dilute acid pretreated aspen hydrolysate in increasing concentrations in order to produce higher ethanol yields compared to the unadapted parent strain. S. cerevisiae (ER) produced ethanol from enzymatic pretreated cellulose containing low concentrations of glucose (1-3g/L). These results show that fermentations of lignocellulosic feedstocks can be optimized based on the substrate and organism for increased ethanol yields.
Resumo:
Rice (Oryza sativa L.) is an important cash crop in Honduras because of the rice lobby’s size, willingness to protest, and ability to negotiate favorable price guarantees on a year-to-year basis. Despite the availability of inexpensive irrigation in the study area in Flores, La Villa de San Antonio, Comayagua, the rice farmers do not cultivate the crop using prescribed methods such as land leveling, puddling, and water conservation structures. Soil moisture (Volumetric Water Content) was measured using a soil moisture probe after the termination of the first irrigation within the tillering/vegetative, panicle emergence/flowering, post-flowering/pre-maturation and maturation stages. Yield data was obtained by harvesting on 1 m2 plots in each soil moisture testing site. Data was analyzed to find the influence of toposequential position along transects, slope, soil moisture, and farmers on yields. The results showed that toposequential position was more important than slope and soil moisture on yields. Soil moisture was not a significant predictor of rice yields. Irrigation politics, precipitation, and land tenure were proposed as the major explanatory variables for this result.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
AIMS: In the Swiss heroin substitution trials, patients are treated with self-administered diacetylmorphine (heroin). Intravenous administration is not possible in patients that have venosclerosis. Earlier studies have demonstrated that oral diacetylmorphine may be used, although it is completely converted to morphine presystemically. Morphine bioavailability after high-dose oral diacetylmorphine is considerably higher than would be predicted from low-dose trials. The aim was to investigate whether the unexpectedly high bioavailability is due to a difference in the drug examined, and whether it depends on previous exposure or on dose. METHODS: Opioid-naive healthy volunteers and dependent patients from the Swiss heroin trials (n = 8 per group) received low doses of intravenous and oral deuterium-labelled morphine and diacetylmorphine, respectively. Patients also received a high oral diacetylmorphine dose. RESULTS: The maximum plasma concentration (C(max)) of morphine was twofold higher after oral diacetylmorphine than after morphine administration in both groups. However, morphine bioavailability was considerably higher in chronic users [diacetylmorphine 45.6% (95% confidence interval 40.0, 51.3), morphine 37.2% (30.1, 44.3)] than in naive subjects [diacetylmorphine 22.9% (16.4, 29.4), morphine 23.9% (16.5, 31.2)] after low oral doses (48.5 micromol) of either diacetylmorphine or morphine. Morphine clearance was similar in both groups. Moreover, oral absorption of morphine from diacetylmorphine was found to be dose dependent, with bioavailability reaching 64.2% (55.3, 73.1) for high diacetylmorphine doses (1601 micromol). CONCLUSIONS: Oral absorption of opioids is substance-, dose- and patient collective-dependent, suggesting that there may be a saturation of first-pass processes, the exact mechanism of which is not yet understood.
Resumo:
Smallholders in eastern Paraguay plant small stands of Eucalyptus grandis W. Hill ex Maiden intended for sale on the local market. Smallholders have been encouraged to plant E. grandis by local forestry extension agents who offer both forestry education and incentive programs. Smallholders who practice recommended forestry techniques geared towards growing large diameter trees of good form are financially rewarded by the local markets which desire saw log quality trees. The question was posed, are smallholders engaging in recommended silvicultural practices and producing reasonable volume yields? It was hypothesized that smallholders, having received forestry education and having financial incentives from the local market, would engage in silvicultural practices resulting in trees of good form and volume yields that were reasonable for the local climate and soil characteristics. Yield volume results from this study support this hypothesis. Mean volume yield was estimated at 70 cubic meters per hectare at age four and 225 cubic meters per hectare at age eight. These volume yields compare favorably to volume yields from other studies of E. grandis grown in similar climates, with similar stocking levels and site qualities.