146 resultados para XENON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 10**6 km**2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 10**9 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-µm to µm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 10**9 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifteen submarine glasses from the East Pacific Rise (CYAMEX), the Kyushu-Palau Ridge (DSDP Leg 59) and the Nauru Basin (DSDP Leg 61) were analysed for noble gas contents and isotopic ratios. Both the East Pacific Rise and Kyushu-Palau Ridge samples showed Ne excess relative to Ar and a monotonic decrease from Xe to Ar when compared with air noble gas abundance. This characteristic noble gas abundance pattern (type 2, classified by Ozima and Alexander) is interpreted to be due to a two-stage degassing from a noble gas reservoir with originally atmospheric abundance. In the Kyushu-Palau Ridge sample, noble gases are nearly ten times more abundant than in the East Pacific Rise samples. This may be attributed to an oceanic crust contamination in the former mantle source. There is no correlation between the He content and that of the other noble gas in the CYAMEX samples. This suggests that He was derived from a larger region, independent from the other noble gases. Except where radiogenic isotopes are involved, all other noble gas isotopic ratios were indistinguishable from air noble gas isotopic ratios. The 3He/4He in the East Pacific Rise shows a remarkably uniform ratio of (1.21 +/- 0.07)*10**-5, while the40Ar/36Ar ranges from 700 to 5600.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to complement ISFOC’s characterization capabilities, a Helios 3198 CPV Solar Simulator was installed in summer 2010. This Solar Simulator, based on a parabolic mirror and a high-intensity, small area Xenon flash lamp was developed by the Instituto de Energía Solar in Madrid [1] and is manufactured and distributed by Soldaduras Avanzadas [2]. This simulator is used not only for R&D purposes, but as a quality control tool for incoming modules that are to be installed in ISFOC’s CPV plants. In this paper we will discuss the results of recent measurements of close to 5000 modules, the entire production of modules corresponding to a small CPV power plant (200 kWp). We scrutinize the resultant data for signs of drift in the measurements, and analyze the light quality before and after, to check for changes in spectrum or spatial uniformity.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La medición y testeo de células fotovoltaicas en el laboratorio o en la industria exige reproducir unas condiciones de iluminación semejantes a las reales. Por eso se utilizan sistemas de iluminación basados en lámparas flash de Xenon que reproducen las condiciones reales en cuanto a nivel de irradiancia y espectro de la luz incidente. El objetivo de este proyecto es realizar los circuitos electrónicos necesarios para el disparo de dichas lámparas. El circuito de alimentación y disparo de una lámpara flash consta de una fuente de alimentación variable, un circuito de disparo para la ionización del gas Xenon y la electrónica de control. Nuestro circuito de disparo pretende producir pulsos adecuados para los dispositivos fotovoltaicos tanto en irradiancia, espectro y en duración, de forma que con un solo disparo consigamos el tiempo, la irradiancia y el espectro suficiente para el testeo de la célula fotovoltaica. La mayoría de estos circuitos exceptuando los específicos que necesita la lámpara, serán diseñados, simulados, montados en PCB y comprobados posteriormente en el laboratorio. ABSTRACT. Measurement and testing of photovoltaic cells in the laboratory or in industry requires reproduce lighting conditions similar to the real ones. So are used based lighting systems xenon flash lamps that reproduce the actual conditions in the level of irradiance and spectrum of the incident light. The objective of this project is to make electronic circuits required for such lamps shot. The power supply circuit and flash lamp shot consists of a variable power supply, a trigger circuit for Xenon gas ionization and the control electronics. Our shot circuit aims to produce pulses suitable for photovoltaic devices both irradiance, spectrum and duration, so that with a single shot get the time, the irradiance and spectrum enough for testing the photovoltaic cell. Most of these circuits except lamp specific requirements will be designed, simulated, and PCB mounted subsequently tested in the laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser-polarized gases (3He and 129Xe) are currently being used in magnetic resonance imaging as strong signal sources that can be safely introduced into the lung. Recently, researchers have been investigating other tissues using 129Xe. These studies use xenon dissolved in a carrier such as lipid vesicles or blood. Since helium is much less soluble than xenon in these materials, 3He has been used exclusively for imaging air spaces. However, considering that the signal of 3He is more than 10 times greater than that of 129Xe for presently attainable polarization levels, this work has focused on generating a method to introduce 3He into the vascular system. We addressed the low solubility issue by producing suspensions of 3He microbubbles. Here, we provide the first vascular images obtained with laser-polarized 3He. The potential increase in signal and absence of background should allow this technique to produce high-resolution angiographic images. In addition, quantitative measurements of blood flow velocity and tissue perfusion will be feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ high pressure 129Xe NMR spectroscopy in combination with volumetric adsorption measurements were used for the textural characterization of different carbon materials with well-defined porosity including microporous carbide-derived carbons, ordered mesoporous carbide-derived carbon, and ordered mesoporous CMK-3. Adsorption/desorption isotherms were measured also by NMR up to relative pressures close to p/p0 = 1 at 237 K. The 129Xe NMR chemical shift of xenon adsorbed in porous carbons is found to be correlated with the pore size in analogy to other materials such as zeolites. In addition, these measurements were performed loading the samples with n-nonane. Nonane molecules preferentially block the micropores. However, 129Xe NMR spectroscopy proves that the nonane also influences the mesopores, thus providing information about the pore system in hierarchically structured materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractionation of the noble gases should occur during formation of a Structure I gas hydrate from water and CH4 such that CH4 hydrate is greatly enriched in Xenon. Noble gas concentrations and fractionation factors (F[4He], F[22Ne], F[86Kr], and F[132Xe] as well as R/Ra) were determined for eight gas hydrate specimens collected on Leg 164 to evaluate this theoretical possibility and to assess whether sufficient quantities of Xe are hosted in oceanic CH4 hydrate to account for Xe "missing" from the atmosphere. The simplest explanation for our results is that samples contain mixtures of air and two end-member gases. One of the end-member gases is depleted in Ne, but significantly enriched in Kr and Xe, as anticipated if the source of this gas involves fractionation during Structure I gas hydrate formation. However, although oceanic CH4 hydrate may be greatly enriched in Xe, simple mass balance calculations indicate that oceanic CH4 hydrate probably represents only a minor reservoir of terrestrial Xe. Noble gas analyses may play an important role in understanding the dynamics of gas hydrate reservoirs, but significantly more work is needed than presented here.