933 resultados para X inactive specific transcript protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorescence of a polyanionic conjugated polymer can be quenched by extremely low concentrations of cationic electron acceptors in aqueous solutions. We report a greater than million-fold amplification of the sensitivity to fluorescence quenching compared with corresponding “molecular excited states.” Using a combination of steady-state and ultrafast spectroscopy, we have established that the dramatic quenching results from weak complex formation [polymer(−)/quencher(+)], followed by ultrafast electron transfer from excitations on the entire polymer chain to the quencher, with a time constant of 650 fs. Because of the weak complex formation, the quenching can be selectively reversed by using a quencher-recognition diad. We have constructed such a diad and demonstrate that the fluorescence is fully recovered on binding between the recognition site and a specific analyte protein. In both solutions and thin films, this reversible fluorescence quenching provides the basis for a new class of highly sensitive biological and chemical sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we extend the study of the genes controlling the formation of domes in the rat mammary cell line LA7 under the influence of DMSO. The role of the rat8 gene has already been demonstrated. We have now studied two additional genes. The first, called 133, is the rat ortholog of the human epithelial membrane protein 3 (EMP3), a member of the peripheral myelin protein 22 (PMP22)/EMP/lens-specific membrane protein 20 (MP20) gene family that encodes for tetratransmembrane proteins; it is expressed in the LA7 line in the absence of DMSO but not in its presence. The second gene is the β subunit of the amiloride-sensitive Na+ channel. Studies with antisense oligonucleotides show that the formation of domes is under the control of all three genes: the expression of rat8 is required for both their formation and their persistence; the expression of the Na+ channel β subunit is required for their formation; and the expression of gene 133 blocks the expression of the Na+ channel genes, thus preventing formation of the domes. The formation of these structures is also accompanied by the expression of α6β1 integrin, followed by that of E-cadherin and cytokeratin 8. It appears, therefore, that dome formation requires the activity of the Na+ channel and the rat8-encoded protein and is under the negative control of gene 133. DMSO induces dome formation by blocking this control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colicin D has long been thought to stop protein synthesis in infected Escherichia coli cells by inactivating ribosomes, just like colicin E3. Here, we show that colicin D specifically cleaves tRNAsArg including four isoaccepting molecules both in vivo and in vitro. The cleavage occurs in vitro between positions 38 and 39 in an anticodon loop with a 2′,3′-cyclic phosphate end, and is inhibited by a specific immunity protein. Consistent with the cleavage of tRNAsArg, the RNA fraction of colicin-treated cells significantly reduced the amino acid-accepting activity only for arginine. Furthermore, we generated a single mutation of histidine in the C-terminal possible catalytic domain, which caused the loss of the killing activity in vivo together with the tRNAArg-cleaving activity both in vivo and in vitro. These findings show that colicin D directly cleaves cytoplasmic tRNAsArg, which leads to impairment of protein synthesis and cell death. Recently, we found that colicin E5 stops protein synthesis by cleaving the anticodons of specific tRNAs for Tyr, His, Asn, and Asp. Despite these apparently similar actions on tRNAs and cells, colicins D and E5 not only exhibit no sequence homology but also have different molecular mechanisms as to both substrate recognition and catalytic reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although extracellular application of lysophosphatidic acid (LPA) has been extensively documented to produce a variety of cellular responses through a family of specific G protein-coupled receptors, the in vivo organismal role of LPA signaling remains largely unknown. The first identified LPA receptor gene, lpA1/vzg-1/edg-2, was previously shown to have remarkably enriched embryonic expression in the cerebral cortex and dorsal olfactory bulb and postnatal expression in myelinating glia including Schwann cells. Here, we show that targeted deletion of lpA1 results in approximately 50% neonatal lethality, impaired suckling in neonatal pups, and loss of LPA responsivity in embryonic cerebral cortical neuroblasts with survivors showing reduced size, craniofacial dysmorphism, and increased apoptosis in sciatic nerve Schwann cells. The suckling defect was responsible for the death among lpA1(−/−) neonates and the stunted growth of survivors. Impaired suckling behavior was attributable to defective olfaction, which is likely related to developmental abnormalities in olfactory bulb and/or cerebral cortex. Our results provide evidence that endogenous lysophospholipid signaling requires an lp receptor gene and indicate that LPA signaling through the LPA1 receptor is required for normal development of an inborn, neonatal behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterocyst differentiation in the filamentous cyanobacterium Anabaena PCC 7120 requires a functional hetR gene. Increased expression of the hetR gene is seen in developing and mature heterocysts in response to fixed nitrogen limitation. We mapped four likely transcriptional start sites for hetR and identified a specific transcript that is positively autoregulated. By using the copper-responsive petE promoter from Anabaena PCC 7120 to drive hetR expression, we show that ectopic expression of hetR increases heterocyst frequency and induces heterocyst differentiation under fully repressing conditions. Coexpression of a reporter gene shows that expression from the petE promoter is smoothly induced depending on the amount of copper supplied. In the heterocyst pattern mutant PatA, where terminally positioned heterocysts are formed almost exclusively, expression of the petE∷hetR fusion does not result in the formation of intercalary heterocysts. These results suggest that although the intracellular concentration of HetR has to be elevated for the differentiation decision, PatA plays a role as well. This role may be in the form of posttranslational modification of HetR, because PatA is a member of the response regulator family of proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial adhesion to other bacteria, to eukaryotic cells, and to extracellular matrix proteins is frequently mediated by cell surface-associated polymers (fimbriae) consisting of one or more subunit proteins. We have found that polymerization of curlin to fimbriae-like structures (curli) on the surface of Escherichia coli markedly differs from the prevailing model for fimbrial assembly in that it occurs extracellularly through a self-assembly process depending on a specific nucleator protein. The cell surface-bound nucleator primes the polymerization of curlin secreted by the nucleator-presenting cell or by adjacent cells. The addition of monomers to the growing filament seems to be driven by mass action and guided only by the diffusion gradient between the source of secreted monomer and the surface of monomer condensation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor, B-cell-specific activator protein (BSAP), represses the murine immunoglobulin heavy-chain 3' enhancer 3' alpha E(hs1,2) in B cells. Analysis of various 3'alpha E deletional constructs indicates that sequences flanking a and b BSAP-binding sites are essential for appropriate regulation of the enhancer. An octamer motif 5' of the a site and a specific G-rich motif 3' of the b site were identified by competition in electrophoretic mobility-shift assays and methylation-interference foot-printing analysis. Site-directed mutagenesis of either the octamer or G-rich sites resulted in the complete release of repression of 3' alpha E(hs1,2), implicating these two motifs in the repression of this enhancer in B cells. However, when both BSAP-binding sites were mutated, the octamer and G-rich motifs functioned as activators. Moreover, in plasma cells, when BSAP is not expressed, 3' alpha E(hs1,2) is active, and its activity depends on the presence of the other two factors. These results suggest that in B cells, 3' alpha E (hs1,2) is down-regulated by the concerted actions of BSAP, octamer, and G-rich DNA-binding proteins. Supporting this notion of concerted repression, a physical interaction between BSAP and octamer-binding proteins was demonstrated using glutathione S-transferase fusion proteins. Thus, concerted repression of 3' alpha E (hs1,2) in B cells provides a sensitive mechanism by which this enhancer, either individually or as part of a locus-controlling region, is highly responsive to any of several participating factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibody-cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody-interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cgamma1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumor-specific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumor-specific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ser/Arg-rich proteins (SR proteins) are essential splicing factors that commit pre-messenger RNAs to splicing and also modulate 5' splice site choice in the presence or absence of functional U1 small nuclear ribonucleoproteins (snRNPs). Here, we perturbed the U1 snRNP in HeLa cell nuclear extract by detaching the U1-specific A protein using a 2'-O-methyl oligonucleotide (L2) complementary to its binding site in U1 RNA. In this extract, the standard adenovirus substrate is spliced normally, but excess amounts of SR proteins do not exclusively switch splicing from the normal 5' splice site to a proximal site (site 125 within the adenovirus intron), suggesting that modulation of 5' splice site choice exerted by SR proteins requires integrity of the U1 snRNP. The observation that splicing does not necessarily follow U1 binding indicates that interactions between the U1 snRNP and components assembled on the 3' splice site via SR proteins may also be critical for 5' splice site selection. Accordingly, we found that SR proteins promote the binding of the U2 snRNP to the branch site and stabilize the complex formed on a 3'-half substrate in the presence or absence of functional U1 snRNPs. A novel U2/U6/3'-half substrate crosslink was also detected and promoted by SR proteins. Our results suggest that SR proteins in collaboration with the U1 snRNP function in two distinct steps to modulate 5' splice site selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the sequencing and annotation of genomes and transcriptomes of several eukaryotes, the importance of noncoding RNA (ncRNA)-RNA molecules that are not translated to protein products-has become more evident. A subclass of ncRNA transcripts are encoded by highly regulated, multi-exon, transcriptional units, are processed like typical protein-coding mRNAs and are increasingly implicated in regulation of many cellular functions in eukaryotes. This study describes the identification of candidate functional ncRNAs from among the RIKEN mouse full-length cDNA collection, which contains 60,770 sequences, by using a systematic computational filtering approach. We initially searched for previously reported ncRNAs and found nine murine ncRNAs and homologs of several previously described nonmouse ncRNAs. Through our computational approach to filter artifact-free clones that lack protein coding potential, we extracted 4280 transcripts as the largest-candidate set. Many clones in the set had EST hits, potential CpG islands surrounding the transcription start sites, and homologies with the human genome. This implies that many candidates are indeed transcribed in a regulated manner. Our results demonstrate that ncRNAs are a major functional subclass of processed transcripts in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the S-shaped body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two key issues defined the focus of this research in manufacturing plasmid DNA for use In human gene therapy. First, the processing of E.coli bacterial cells to effect the separation of therapeutic plasmid DNA from cellular debris and adventitious material. Second, the affinity purification of the plasmid DNA in a Simple one-stage process. The need arises when considering the concerns that have been recently voiced by the FDA concerning the scalability and reproducibility of the current manufacturing processes in meeting the quality criteria of purity, potency, efficacy, and safety for a recombinant drug substance for use in humans. To develop a preliminary purification procedure, an EFD cross-flow micro-filtration module was assessed for its ability to effect the 20-fold concentration, 6-time diafiltration, and final clarification of the plasmid DNA from the subsequent cell lysate that is derived from a 1 liter E.coli bacterial cell culture. Historically, the employment of cross-flow filtration modules within procedures for harvesting cells from bacterial cultures have failed to reach the required standards dictated by existing continuous centrifuge technologies, frequently resulting in the rapid blinding of the membrane with bacterial cells that substantially reduces the permeate flux. By challenging the EFD module, containing six helical wound tubular membranes promoting centrifugal instabilities known as Dean vortices, with distilled water between the Dean number's of 187Dn and 818Dn,and the transmembrane pressures (TMP) of 0 to 5 psi. The data demonstrated that the fluid dynamics significantly influenced the permeation rate, displaying a maximum at 227Dn (312 Imh) and minimum at 818Dn (130 Imh) for a transmembrane pressure of 1 psi. Numerical studies indicated that the initial increase and subsequent decrease resulted from a competition between the centrifugal and viscous forces that create the Dean vortices. At Dean numbers between 187Dn and 227Dn , the forces combine constructively to increase the apparent strength and influence of the Dean vortices. However, as the Dean number in increases above 227 On the centrifugal force dominates the viscous forces, compressing the Dean vortices into the membrane walls and reducing their influence on the radial transmembrane pressure i.e. the permeate flux reduced. When investigating the action of the Dean vortices in controlling tile fouling rate of E.coli bacterial cells, it was demonstrated that the optimum cross-flow rate at which to effect the concentration of a bacterial cell culture was 579Dn and 3 psi TMP, processing in excess of 400 Imh for 20 minutes (i.e., concentrating a 1L culture to 50 ml in 10 minutes at an average of 450 Imh). The data demonstrated that there was a conflict between the Dean number at which the shear rate could control the cell fouling, and the Dean number at which tile optimum flux enhancement was found. Hence, the internal geometry of the EFD module was shown to sub-optimal for this application. At 579Dn and 3 psi TMP, the 6-fold diafiltration was shown to occupy 3.6 minutes of process time, processing at an average flux of 400 Imh. Again, at 579Dn and 3 psi TMP the clarification of the plasmid from tile resulting freeze-thaw cell lysate was achieved at 120 Iml1, passing 83% (2,5 mg) of the plasmid DNA (6,3 ng μ-1 10.8 mg of genomic DNA (∼23,00 Obp, 36 ng μ-1 ), and 7.2 mg of cellular proteins (5-100 kDa, 21.4 ngμ-1 ) into the post-EFD process stream. Hence the EFD module was shown to be effective, achieving the desired objectives in approximately 25 minutes. On the basis of its ability to intercalate into low molecular weight dsDNA present in dilute cell lysates, and be electrophoresed through agarose, the fluorophore PicoGreen was selected for the development of a suitable dsDNA assay. It was assesseel for its accuracy, and reliability, In determining the concentration and identity of DNA present in samples that were eleclrophoresed through agarose gels. The signal emitted by intercalated PicoGreen was shown to be constant and linear, and that the mobility of the PicaGreen-DNA complex was not affected by the intercalation. Concerning the secondary purification procedure, various anion-exchange membranes were assessed for their ability to capture plasmid DNA from the post-EFD process stream. For a commercially available Sartorius Sartobind Q15 membrane, the reduction in the equilibriumbinding capacity for  ctDNA in buffer of increasing ionic demonstrated that DNA was being.adsorbed by electrostatic  interactions only. However, the problems associated with fluid distribution across the membrane demonstrated that the membrane housing was the predominant cause of the .erratic breakthrough curves. Consequently, this would need to be rectified before such a membrane could be integrated into the current system, or indeed be scaled beyond laboratory scale. However, when challenged with the process material, the data showed that considerable quantities of protein (1150 μg) were adsorbed preferentially to the plasmid DNA (44 μg). This was also shown for derived Pall Gelman UltraBind US450 membranes that had been functionalised by varying molecular weight poly-L~lysine and polyethyleneimine ligands. Hence the anion-exchange membranes were shown to be ineffective in capturing plasmid DNA from the process stream. Finally, work was performed to integrate a sequence-specific DNA·binding protein into a single-stage DNA chromatography, isolating plasmid DNA from E.coli cells whilst minimising the contamination from genomic DNA and cellular protein. Preliminary work demonstrated that the fusion protein was capable of isolating pUC19 DNA into which the recognition sequence for the fusion-protein had been inserted (pTS DNA) when in the presence of the conditioned process material. Althougth the pTS recognition sequence differs from native pUC19 sequences by only 2 bp, the fusion protein was shown to act as a highly selective affinity ligand for pTS DNA alone. Subsequently, the scale of the process was scaled 25-fold and positioned directly following the EFD system. In conclusion, the integration of the EFD micro-filtration system and zinc-finger affinity purification technique resulted in the capture of approximately 1 mg of plasmid DNA was purified from 1L of E.coli  culture in a simple two stage process, resulting in the complete removal of genomic DNA and 96.7% of cellular protein in less than 1 hour of process time.