991 resultados para Wistar-kyoto Rat
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O bulbo rostroventrolateral (RVL) é uma estrutura importante para o controle cardiovascular. Em ratos espontaneamente hipertensos (SHR), há evidências de que a transmissão glutamatérgica descendente do RVL aos neurônios pré-ganglionares simpáticos é maior quando comparada com os ratos Wistar Kyoto (WKY). A adrenomedulina (ADM) é um peptídeo de 52 aminoácidos que tem como funções: vasodilatação, broncodilatação e neurotransmissão no sistema nervoso central (SNC). Dados da literatura têm demonstrado que a ADM quando microinjetada no RVL de ratos normotensos anestesiados ou normotensos não anestesiados promove aumento da pressão arterial. Ademais, também já foi demonstrado que a microinjeção bilateral no RVL do antagonista de ADM (adrenomedulina 22-52) em SHR anestesiados foi capaz de reduzir significantemente a pressão arterial, enquanto que não foi observado alterações da pressão arterial em ratos normotensos. Uma vez que foi descrito que em SHR há um maior número de receptores de ADM no RVL quando comparado com ratos normotensos, esses dados obtidos são convergentes com a idéia de que maior número de receptores de ADM no RVL de SHR possam ser um dos fatores responsáveis pela hipertensão nestes animais. Entretanto, até o momento, não sabemos os efeitos da ADM no RVL de SHR não anestesiados, uma vez que a anestesia pode interferir com a resposta cardiovascular. Estudos anteriores demonstraram que o efeito pressor da ADM no RVL são dependentes de receptores glutamatérgicos, sugerindo uma interação entre a ADM e o glutamato (GLU). Assim, seria interessante estudar a interação entre ADM e a neurotransmissão glutamatérgica no RVL. Por isso, o presente estudo teve como objetivo estudar os efeitos da microinjeção de ADM no RVL e seu efeito sobre a resposta pressora do GLU em ratos normotensos e SHR conscientes... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Metabolic syndrome is characterized by insulin resistance, which is closely related to GLUT4 content in insulin-sensitive tissues. Thus, we evaluated the GLUT4 expression, insulin resistance and inflammation, characteristics of the metabolic syndrome, in an experimental model. Methods: Spontaneously hypertensive neonate rats (18/group) were treated with monosodium glutamate (MetS) during 9 days, and compared with Wistar-Kyoto (C) and saline-treated SHR (H). Blood pressure (BP) and lipid levels, C-reactive protein (CRP), interleukin 6 (IL-6), TNF-alpha and adiponectin were evaluated. GLUT4 protein was analysed in the heart, white adipose tissue and gastrocnemius. Studies were performed at 3 (3-mo), 6 (6-mo) and 9 (9-mo) months of age. Results: MetS rats were more insulin resistant (p<0.001, all ages) and had higher BP (3-mo: p<0.001, 6-mo: p = 0.001, 9-mo: p = 0.015) as compared to C. At 6 months, CRP, IL-6 and TNF-alpha were higher (p<0.001, all comparisons) in MetS rats vs H, but adiponectin was lower in MetS at 9 months (MetS: 32 +/- 2, H: 42 +/- 2, C: 45 +/- 2 pg/mL; p<0.001). GLUT4 protein was reduced in MetS as compared to C rats at 3, 6 and 9-mo, respectively (Heart: 54%, 50% and 57%; Gastrocnemius: 37%, 56% and 50%; Adipose tissue: 69%, 61% and 69%). Conclusions: MSG-treated SHR presented all metabolic syndrome characteristics, as well as reduced GLUT4 content, which must play a key role in the impaired glycemic homeostasis of the metabolic syndrome.
Resumo:
Sex differences in Ca2+-dependent signalling and homoeostasis in the vasculature of hypertensive rats are well characterized. However, sex-related differences in SOCE (store-operated Ca2+ entry) have been minimally investigated. We hypothesized that vascular protection in females, compared with males, reflects decreased Ca2+ mobilization due to diminished activation of Orai 1/STIM 1 (stromal interaction molecule I). In addition, we investigated whether ovariectomy in females affects the activation of the Orai 1/STIM 1 pathway. Endothelium-denuded aortic rings from male and female SHRSP (stroke-prone spontaneously hypertensive rats) and WKY (Wistar Kyoto) rats and from OVX (ovariectomized) or sham female SHRSP and WKY rats were used to functionally evaluate Ca2+ influx-induced contractions. Compared with females, aorta from male SHRSP displayed: (i) increased contraction during the Ca2+-loading period; (ii) similar transient contraction during Ca2+ release from the intracellular stores; (iii) increased activation of STIM 1 and Orai1, as shown by the blockade of STIM 1 and Orai1 with neutralizing antibodies, which reversed the sex differences in contraction during the Ca2+-loading period; and (iv) increased expression of STIM I and Orai I. Additionally, we found that aortas from OVX-SHRSP showed increased contraction during the Ca2+-loading period and increased Orai1 expression, but no changes in the SR (sarcoplasmic reticulum)-buffering capacity or STIM I expression. These findings suggest that augmented activation of STIM 1/Orai 1 in aortas from male SHRSP represents a mechanism that contributes to sex-related impaired control of intracellular Ca2+ levels. Furthermore, female sex hormones may negatively modulate the STIM/Orai 1 pathway, contributing to vascular protection observed in female rats.
Resumo:
Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.
Resumo:
Aerobic exercise training (ET) lowers hypertension and improves patient outcomes in cardiovascular disease. The mechanisms of these effects are largely unknown. We hypothesized that ET modulates microRNAs (miRNAs) involved in vascularization. miRNA-16 regulates the expression of vascular endothelial growth factor and antiapoptotic protein Bcl-2. miRNA-21 targets Bcl-2. miRNA-126 functions by repressing regulators of the vascular endothelial growth factor pathway. We investigated whether miRNA-16, -21 and -126 are modulated in hypertension and by ET. Twelve-week-old male spontaneously hypertensive rats (SHRs; n=14) and Wistar Kyoto (WKY; n=14) rats were assigned to 4 groups: SHRs, trained SHRs (SHR-T), Wistar Kyoto rats, and trained Wistar Kyoto rats. ET consisted of 10 weeks of swimming. ET reduced blood pressure and heart rate in SHR-Ts. ET repaired the slow-to-fast fiber type transition in soleus muscle and the capillary rarefaction in SHR-Ts. Soleus miRNA-16 and -21 levels increased in SHRs paralleled with a decrease of 48% and 25% in vascular endothelial growth factor and Bcl-2 protein levels, respectively. Hypertension increased Bad and decreased Bcl-x and endothelial NO synthase levels and lowered p-Bad(ser112): Bad ratio. ET in SHR-Ts reduced miRNA-16 and -21 levels and elevated vascular endothelial growth factor and Bcl-2 levels. ET restored soleus endothelial NO synthase levels plus proapoptotic and antiapoptotic mediators in SHR-Ts, indicating that the balance between angiogenic and apoptotic factors may prevent microvascular abnormalities in hypertension. miRNA-126 levels were reduced in SHRs with an increase of 51% in phosphoinositol-3 kinase regulatory subunit 2 expression but normalized in SHR-Ts. Our data show that ET promoted peripheral revascularization in hypertension, which could be associated with regulation of select miRNAs, suggesting a mechanism for its potential therapeutic application in vascular diseases. (Hypertension. 2012;59[part 2]:513-520.). Online Data Supplement