988 resultados para Wind speed data


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grass reference evapotranspiration (ETo) is an important agrometeorological parameter for climatological and hydrological studies, as well as for irrigation planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (FAD PM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process: net radiation (Rn), air temperature (7), vapor pressure deficit (Delta e), and wind speed (U); and has presented very good results when compared to data from lysimeters Populated with short grass or alfalfa. In some conditions, the use of the FAO PM method is restricted by the lack of input variables. In these cases, when data are missing, the option is to calculate ETo by the FAD PM method using estimated input variables, as recommended by FAD Irrigation and Drainage Paper 56. Based on that, the objective of this study was to evaluate the performance of the FAO PM method to estimate ETo when Rn, Delta e, and U data are missing, in Southern Ontario, Canada. Other alternative methods were also tested for the region: Priestley-Taylor, Hargreaves, and Thornthwaite. Data from 12 locations across Southern Ontario, Canada, were used to compare ETo estimated by the FAD PM method with a complete data set and with missing data. The alternative ETo equations were also tested and calibrated for each location. When relative humidity (RH) and U data were missing, the FAD PM method was still a very good option for estimating ETo for Southern Ontario, with RMSE smaller than 0.53 mm day(-1). For these cases, U data were replaced by the normal values for the region and Delta e was estimated from temperature data. The Priestley-Taylor method was also a good option for estimating ETo when U and Delta e data were missing, mainly when calibrated locally (RMSE = 0.40 mm day(-1)). When Rn was missing, the FAD PM method was not good enough for estimating ETo, with RMSE increasing to 0.79 mm day(-1). When only T data were available, adjusted Hargreaves and modified Thornthwaite methods were better options to estimate ETo than the FAO) PM method, since RMSEs from these methods, respectively 0.79 and 0.83 mm day(-1), were significantly smaller than that obtained by FAO PM (RMSE = 1.12 mm day(-1). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the Weather Research and Forecast (WRF) model in wind simulation was evaluated under different numerical and physical options for an area of Portugal, located in complex terrain and characterized by its significant wind energy resource. The grid nudging and integration time of the simulations were the tested numerical options. Since the goal is to simulate the near-surface wind, the physical parameterization schemes regarding the boundary layer were the ones under evaluation. Also, the influences of the local terrain complexity and simulation domain resolution on the model results were also studied. Data from three wind measuring stations located within the chosen area were compared with the model results, in terms of Root Mean Square Error, Standard Deviation Error and Bias. Wind speed histograms, occurrences and energy wind roses were also used for model evaluation. Globally, the model accurately reproduced the local wind regime, despite a significant underestimation of the wind speed. The wind direction is reasonably simulated by the model especially in wind regimes where there is a clear dominant sector, but in the presence of low wind speeds the characterization of the wind direction (observed and simulated) is very subjective and led to higher deviations between simulations and observations. Within the tested options, results show that the use of grid nudging in simulations that should not exceed an integration time of 2 days is the best numerical configuration, and the parameterization set composed by the physical schemes MM5–Yonsei University–Noah are the most suitable for this site. Results were poorer in sites with higher terrain complexity, mainly due to limitations of the terrain data supplied to the model. The increase of the simulation domain resolution alone is not enough to significantly improve the model performance. Results suggest that error minimization in the wind simulation can be achieved by testing and choosing a suitable numerical and physical configuration for the region of interest together with the use of high resolution terrain data, if available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the latest years the wind energy sector experienced an exponential growth all over the world. What started as a deployment of onshore projects, soon moved to offshore and, more recently to the urban environment within the context of smart cities and renewable micro-generation. However, urban wind projects using micro turbines do not have enough profit margins to enable the setup of comprehensive and expensive measurement campaigns, a standard procedure for the deployment of large wind parks. To respond to the wind assessment needs of the future smart cities a new and simple methodology for urban wind resource assessment was developed. This methodology is based on the construction of a surface involving a built area in order to estimate the wind potential by treating it as very complex orography. This is a straightforward methodology that allows estimating the sustainable urban wind potential, being suitable to map the urban wind resource in large areas. The methodology was applied to a case study and the results enabled the wind potential assessment of a large urban area being consistent with experimental data obtained in the case study area, with maximum deviations of the order of 10% (mean wind speed) and 20% (power density).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classical statistical study of the wind speed in the atmospheric surface layer is madegenerally from the analysis of the three habitual components that perform the wind data,that is, the component W-E, the component S-N and the vertical component,considering these components independent.When the goal of the study of these data is the Aeolian energy, so is when wind isstudied from an energetic point of view and the squares of wind components can beconsidered as compositional variables. To do so, each component has to be divided bythe module of the corresponding vector.In this work the theoretical analysis of the components of the wind as compositionaldata is presented and also the conclusions that can be obtained from the point of view ofthe practical applications as well as those that can be derived from the application ofthis technique in different conditions of weather

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following a high wind event on January 24, 2006, at least five people claimed to have seen or felt the superstructure of the Saylorville Reservoir Bridge in central Iowa moving both vertically and laterally. Since that time, the Iowa Department of Transportation (DOT) contracted with the Bridge Engineering Center at Iowa State University to design and install a monitoring system capable of providing notification of the occurrence of subsequent high wind events. In subsequent years, a similar system was installed on the Red Rock Reservoir Bridge to provide the same wind monitoring capabilities and notifications to the Iowa DOT. The objectives of the system development and implementation are to notify personnel when the wind speed reaches a predetermined threshold such that the bridge can be closed for the safety of the public, correlate structural response with wind-induced response, and gather historical wind data at these structures for future assessments. This report describes the two monitoring systems, their components, upgrades, functionality, and limitations, and results from one year of wind data collection at both bridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.