630 resultados para Wilhite, Clayton
Resumo:
Introduction. Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be determined. This study used CT scans of AIS patients to measure segmental torso masses and explores how joint moments in the coronal plane are affected by changes in the position of the intervertebral joint’s axis of rotation; particularly at the apex of a scoliotic major curve. Methods. Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint torques occurring in the spine for a group of 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). Image processing software, ImageJ (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral (IV) joint torques at each vertebral level were found using principles of static equilibrium together with the segmental body mass data. Summing the torque contributions for each level above the required joint, allowed the cumulative joint torque at a particular level to be found. Since there is some uncertainty in the position of the coronal plane Instantaneous Axis of Rotation (IAR) for scoliosis patients, it was assumed the IAR was located in the centre of the IV disc. A sensitivity analysis was performed to see what effect the IAR had on the joint torques by moving it laterally 10mm in both directions. Results. The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint torques during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm being found in patient 13. Shifting the assumed IAR by 10mm towards the convexity of the spine, increased the joint torque at that level by a mean 9.0%, showing that calculated joint torques were moderately sensitive to the assumed IAR location. When the IAR midline position was moved 10mm away from the convexity of the spine, the joint torque reduced by a mean 8.9%. Conclusion. Coronal plane joint torques as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. This study provides new anthropometric reference data on vertebral level-by-level torso mass in AIS patients which will be useful for biomechanical models of scoliosis progression and treatment. However, the CT scans were performed in supine (no gravitational load on spine) and curve magnitudes are known to be smaller than those measured in standing.
Resumo:
Introduction. Endoscopic anterior scoliosis correction has been employed recently as a less invasive and level-sparing approach compared with open surgical techniques. We have previously demonstrated that during the two-year post-operative period, there was a mean loss of rib hump correction by 1.4 degrees. The purpose of this study was to determine whether intra- or inter-vertebral rotational deformity during the post-operative period could account for the loss of rib hump correction. Materials and Methods. Ten consecutive patients diagnosed with adolescent idiopathic scoliosis were treated with an endoscopic anterior scoliosis correction. Low-dose computed tomography scans of the instrumented segment were obtained post-operatively at 6 and 24 months following institutional ethical approval and patient consent. Three-dimensional multi-planar reconstruction software (Osirix Imaging Software, Pixmeo, Switzerland) was used to create axial slices of each vertebral level, corrected in both coronal and sagittal planes. Vertebral rotation was measured using Ho’s method for every available superior and inferior endplate at 6 and 24 months. Positive changes in rotation indicate a reduction and improvement in vertebral rotation. Intra-observer variability analysis was performed on a subgroup of images. Results. Mean change in rotation for vertebral endplates between 6 and 24 months post-operatively was -0.26˚ (range -3.5 to 4.9˚) within the fused segment and +1.26˚ (range -7.2 to 15.1˚) for the un-instrumented vertebrae above and below the fusion. Mean change in clinically measured rib hump for the 10 patients was -1.6˚ (range -3 to 0˚). The small change in rotation within the fused segment accounts for only 16.5% of the change in rib hump measured clinically whereas the change in rotation between the un-instrumented vertebrae above and below the construct accounts for 78.8%. There was no clear association between rib hump recurrence and intra- or inter-vertebral rotation in individual patients. Intra-rater variability was ± 3˚. Conclusions. Intra- and inter-vertebral rotation continues post-operatively both within the instrumented and un-instrumented segments of the immature spine. Rotation between the un-instrumented vertebrae above and below the fusion was +1.26˚, suggesting that the un-instrumented vertebrae improved and de-rotated slightly after surgery. This may play a role in rib hump recurrence, however this remains clinically insignificant.
Resumo:
Background Thoracoscopic anterior scoliosis instrumentation is a safe and viable surgical option for corrective fusion of progressive adolescent idiopathic scoliosis (AIS) and has been performed at our centre on 205 patients since 2000. However, there is a paucity of literature reporting on or examining optimum methods of analgesia following this type of surgery. A retrospective study was designed to present the authors’ technique for delivering intermittent local anaesthetic boluses via an intrapleural catheter following thoracoscopic scoliosis surgery; report the pain levels that may be expected and any adverse effects associated with the use of intrapleural analgesia, as part of a combined postoperative analgesia regime. Methods Records for 32 patients who underwent thoracoscopic anterior correction for AIS were reviewed. All patients received an intrapleural catheter inserted during surgery, in addition to patient-controlled opiate analgesia and oral analgesia. After surgery, patients received a bolus of 0.25% bupivacaine every four hours via the intrapleural catheter. Patient’s perceptions of their pain control was measured using the visual analogue pain scale scores which were recorded before and after local anaesthetic administration and the quantity and time of day that any other analgesia was taken, were also recorded. Results 28 female and four male patients (mean age 14.5 ± 1.5 years) had a total of 230 boluses of local anaesthetic administered in the 96 hour period following surgery. Pain scores significantly decreased following the administration of a bolus (p < 0.0001), with the mean pain score decreasing from 3.66 to 1.83. The quantity of opiates via patient-controlled analgesia after surgery decreased steadily between successive 24 hours intervals after an initial increase in the second 24 hour period when patients were mobilised. One intrapleural catheter required early removal due to leakage; there were no other associated complications with the intermittent intrapleural analgesia method. Conclusions Local anaesthetic administration via an intrapleural catheter is a safe and effective method of analgesia following thoracoscopic anterior scoliosis correction. Post-operative pain following anterior thoracic scoliosis surgery can be reduced to ‘mild’ levels by combined analgesia regimes. Keywords: Adolescent idiopathic scoliosis; Thoracoscopic anterior spinal fusion; Anterior fusion; Intrapleural analgesia; Endoscopic anterior surgery; Pain relief; Scoliosis surgery
Resumo:
Introduction: Thoracoscopic anterior instrumented fusion (TASF) is a safe and viable surgical option for corrective stabilisation of progressive adolescent idiopathic scoliosis (AIS) [1-2]. However, there is a paucity of literature examining optimum methods of analgesia following this type of surgery. The aim of this study was to identify; if local anaesthetic bolus via an intrapleural catheter provides effective analgesia following thoracoscopic scoliosis correction; what pain levels may be expected; and any adverse effects associated with the use of intermittent intrapleural analgesia at our centre. Methods: A subset of the most recent 80 patients from a large single centre consecutive series of 201 patients (April 2000 to present) who had undergone TASF had their medical records reviewed. 32 patients met the inclusion criteria for the analysis (i.e. pain scores must have been recorded within the hour prior and within two hours following an intrapleural bolus being given). All patients received an intrapleural catheter inserted during surgery, in addition to patient-controlled opiate analgesia and oral analgesia as required. After surgery, patients received a bolus of 0.25% bupivacaine every four hours via the intrapleural catheter. Visual analogue pain scale scores were recorded before and after the bolus of local anaesthetic and the quantity and time of day that any other analgesia was taken, were also recorded. Results and Discussion: 28 female and four male patients (mean age 14.5 ± 1.5 years) had a total of 230 boluses of local anaesthetic administered intrapleurally, directly onto the spine, in the 96 hour period following surgery. Pain scores significantly decreased following the administration of a bolus (p<0.0001), with the mean pain score decreasing from 3.66 to 1.83. The quantity of opiates via patient-controlled analgesia after surgery decreased steadily between successive 24 hours intervals after an initial increase in the second 24 hour period when patients were mobilised. One intrapleural catheter required early removal at 26 hours postop due to leakage; there were no other associated complications with the intermittent intrapleural analgesia method. Post-operative pain following anterior scoliosis correction was decreased significantly with the administration of regular local anaesthetic boluses and can be reduced to ‘mild’ levels by combined analgesia regimes. The intermittent intrapleural analgesia method was not associated with any adverse events or complications in the full cohort of 201 patients.
Resumo:
Introduction: Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. This study used supine CT scans of AIS patients to measure segmental torso masses and explored the joint moments in the coronal plane, particularly at the apex of a scoliotic major curve. Methods: Existing low dose CT data from the Paediatric Spine Research Group was used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of 20 female AIS patients with right sided thoracic curves. The mean age was 15.0 ± 2.7 years and all curves were classified Lenke Type 1 with a mean Cobb angle 52 ± 5.9°. Image processing software, ImageJ (v1.45 NIH USA) was used to create reformatted coronal plane images, reconstruct vertebral level-by-level torso segments and subsequently measure the torso volume corresponding to each vertebral level. Segment mass was then determined by assuming a tissue density of 1.04x103 kg/m3. Body segment masses for the head, neck and arms were taken from published anthropometric data (Winter 2009). Intervertebral joint moments in the coronal plane at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres with the segmental body mass data. Results and Discussion: The magnitude of the torso masses from T1-L5 increased inferiorly, with a 150% increase in mean segmental torso mass from 0.6kg at T1 to 1.5kg at L5. The magnitudes of the calculated coronal plane joint moments during relaxed standing were typically 5-7 Nm at the apex of the curve, with the highest apex joint torque of 7Nm. The CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing, due to the absence of gravity acting on the spine. Hence, it can be expected that the moments produced by gravity in the standing individual will be greater than those calculated here.
Resumo:
One set of public institutions that has seen growing discussion about the transformative impact of new media technologies has been universities. The higher education sector, historically one of the more venerable and stable areas of public life, is now the subject of almost continuous speculation about whether it can continue in its current form during the 21st century. Digital media technologies are often seen as being at the forefront of such changes. It has been widely noted that moves towards a knowledge economy generates ‘skills-biased technological change’, that places a premium upon higher education qualifications, and that this earnings gap remains despite the continuing increase in the number of university graduates. As the demand for higher education continues to grow worldwide, there are new discussions about whether technologically-mediated education through new forms such as Massively Open Online Courses (MOOCs) are broadening access to quality learning, or severing the vital connection between teacher and student seen as integral to the learning process. This paper critically appraises such debates in the context of early 21st century higher education. It will discuss ten drivers of change in higher education, many of which are related to themes discussed elsewhere in this book, such as the impact of social media, globalization, and a knowledge economy. It will also consider the issues raised in navigating such developments from the perspective of the ‘Five P’s’: practical issues; personal issues; pedagogical issues; policy issues; and philosophical issues. It also includes a critical evaluation of MOOCs from the point of view of their educational qualities. It will conclude with the observation that while universities will continue to play a significant – and perhaps growing – role in the economy, society and culture, the issues raised about what Clayton Christensen and Henry Eyring term the ‘disruptive university’ (Christensen and Eyring 2011) are nonetheless pressing ones, and that cost and policy pressures in particular are likely to generate significant institutional transformations in higher education worldwide.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data.1 Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc). The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing.2 Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
Purpose: Although oral fluoropyrimidine pro-drugs are increasingly being administered in preference to intravenous nucleoside analogues in cancer chemotherapy, their activation in malignant liver tissue may be insufficient. OGT 719 (1-galactopyranosyl-5-fluorouracil) is a novel nucleoside analogue, preferentially localized in hepatocytes and hepatoma cells via the asialoglycoprotein receptor. The aim of this study was to assess the systemic bioavailability of this rationally designed drug in 16 patients with advanced solid cancers. Method: Crossover pharmacokinetic study of oral (400 or 800 mg) and intravenous (250 mg/m 2) OGT 719. Results: Linear pharmacokinetics and oral bioavailability of approximately 25% were observed at the dose levels used in this study. Like other 5-FU prodrugs, considerable interpatient variability was observed in bioavailability following oral dosing. The mean half-life for oral doses was 4 h. OGT 719 was well tolerated. No objective tumour responses were demonstrated. Conclusion: The systemic bioavailability and half-life of oral OGT 719 are sufficient to merit dose escalation studies with frequent daily dosing. Subsequent efficacy studies should be performed in patients with primary and secondary liver malignancies.
Resumo:
Queer student activists are a visible aspect of Australian tertiary communities. This chapter explores the findings of interviews with eight queer student in which they discuss their understandings of queer student activism and the way they see the university setting shaping the production queer student media. The findings draw out two themes: visibility and access and participation. These discussions illustrate how the intersections of queer, student, activism, and their associated contexts, create a particular type of activism. This chapter thus contributes to queer history by demonstrating how one specific cultural subset does queer activism.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
PURPOSE. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. METHODS. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone-based scaffold plus 0.54μg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. RESULTS. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. CONCLUSION. The results of this study demonstrate that rhBMP-2 plus PCL- based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.
Resumo:
Background Adolescent Idiopathic Scoliosis is the most common type of spinal deformity whose aetiology remains unclear. Studies suggest that gravitational forces in the standing position play an important role in scoliosis progression, therefore anthropometric data are required to develop biomechanical models of the deformity. Few studies have analysed the trunk by vertebral level and none have performed investigations of the scoliotic trunk. The aim of this study was to determine the centroid, thickness, volume and estimated mass, for sections of the trunk in Adolescent Idiopathic Scoliosis patients. Methods Existing low-dose Computed Tomography scans were used to estimate vertebral level-by-level torso masses for 20 female Adolescent Idiopathic Scoliosis patients. ImageJ processing software was used to analyse the Computed Tomography images and enable estimation of the segmental torso mass corresponding to each vertebral level. Findings The patients’ mean age was 15.0 (SD 2.7) years with mean major Cobb Angle of 52° (SD 5.9) and mean patient weight of 58.2 (SD 11.6) kg. The magnitude of torso segment mass corresponding to each vertebral level increased by 150% from 0.6kg at T1 to 1.5kg at L5. Similarly, the segmental thickness corresponding to each vertebral level from T1-L5 increased inferiorly from a mean 18.5 (SD 2.2) mm at T1 to 32.8 (SD 3.4) mm at L5. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) % which was close to values reported in previous literature. Interpretation This study provides new anthropometric reference data on segmental (vertebral level-by-level) torso mass in Adolescent Idiopathic Scoliosis patients, useful for biomechanical models of scoliosis progression and treatment.
Resumo:
Introduction Calculating segmental torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. Methods Low dose CT data was used to calculate vertebral level-by-level torso masses and spinal joint torques for 20 female AIS patients (mean age 15.0 ± 2.7 years, mean Cobb angle 53 ± 7.1°). ImageJ software (v1.45 NIH USA) was used to threshold the T1 to L5 CT images and calculate the segmental torso volume and mass for each vertebral level. Masses for the head, neck and arms were taken from published data. Intervertebral joint torques in the coronal and sagittal planes at each vertebral level were found from the position of the centroid of the segment masses relative to the joint centres (assumed to be at the centre of the intervertebral disc. The joint torque at each level was found by summing torque contributions for all segments above that joint. Results Segmental torso mass increased from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint torques due to gravity were 5-7Nm at the apex of the curve; sagittal torques were 3-5.4Nm. Conclusion CT scans were in the supine position and curve magnitudes are known to be smaller than those in standing. Hence, this study has shown that gravity produces joint torques potentially of higher than 7Nm in the coronal plane and 5Nm in the sagittal plane during relaxed standing in scoliosis patients. The magnitude of these torques may help to explain the mechanics of AIS progression and the mechanics of bracing. This new data on torso segmental mass in AIS patients will assist biomechanical models of scoliosis.
Resumo:
Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.