921 resultados para Wild boar.
Resumo:
Australian and international chickpea (Cicer arietinum) cultivars and germplasm accessions, and wild annual Cicer spp. in the primary and secondary gene pools, were assessed in glasshouse experiments for levels of resistance to the root-lesion nematodes Pratylenchus thornei and P. neglectus. Lines were grown in replicated experiments in pasteurised soil inoculated with a pure culture of either P. thornei or P. neglectus and the population density of the nematodes in the soil plus roots after 16 weeks growth was used as a measure of resistance. Combined statistical analyses of experiments (nine for P. thornei and four for P. neglectus) were conducted and genotypes were assessed using best linear unbiased predictions. Australian and international chickpea cultivars possessed a similar range of susceptibilities through to partial resistance. Wild relatives from both the primary (C. reticulatum and C. echinospermum) and secondary (C. bijugum) gene pools of chickpea were generally more resistant than commercial chickpea cultivars to either P. thornei or P. neglectus or both. Wild relatives of chickpea have probably evolved to have resistance to endemic root-lesion nematodes whereas modern chickpea cultivars constitute a narrower gene pool with respect to nematode resistance. Resistant accessions of C. reticulatum and C. echinospermum were crossed and topcrossed with desi chickpea cultivars and resistant F(4) lines were obtained. Development of commercial cultivars with the high levels of resistance to P. thornei and P. neglectus in these hybrids will be most valuable for areas of the Australian grain region and other parts of the world where alternating chickpea and wheat crops are the preferred rotation.
Resumo:
Dugongs (Dugong dugon) are marine mammals that obtain nutrients through hindgut fermentation of seagrass, however, the microbes responsible have not been identified. This study used denaturing gradient gel electrophoresis (DGGE) and 454-pyrosequencing to profile hindgut bacterial communities in wild dugongs. Faecal samples obtained from 32 wild dugongs representing four size/maturity classes, and two captive dugongs fed on cos lettuce were screened using DGGE. Partial 16S rRNA gene profiles of hindgut bacteria from wild dugong calves and juveniles were grouped together and were different to those in subadults and adults. Marked differences between hindgut bacterial communities of wild and captive dugongs were also observed, except for a single captive whose profile resembled wild adults following an unsuccessful reintroduction to the wild. Pyrosequencing of hindgut communities in two wild dugongs confirmed the stability of bacterial populations, and Firmicutes (average 75.6% of Operational Taxonomic Units [OTUs]) and Bacteroidetes (19.9% of OTUs) dominated. Dominant genera were Roseburia, Clostridium, and Bacteroides. Hindgut microbial composition and diversity in wild dugongs is affected by ontogeny and probably diet. In captive dugongs, the absence of the dominant bacterial DNA bands identified in wild dugongs is probably dependent upon prevailing diet and other captive conditions such as the use of antibiotics. This study represents a first step in the characterisation of a novel microbial ecosystem-the marine hindgut of Sirenia.
Resumo:
Since 1992, wild dolphin provisioning has occurred on a nightly basis at Tangalooma, a resort located on Moreton Island, Australia. Each evening at dusk up to 12 bottlenose dolphins (Tursiops sp.) are provided with fish in a regulated provisioning program. Since July 1998, biologists managing the program have documented 23 occurrences of "gift giving," when several of the provisioned dolphins have offered wild-caught cephalopod or fin fish species to staff members. The characteristics of each of these events are presented, and we explore the relationships between these events and their temporal patterns, and the age and sex of the dolphins involved. We also consider the behavioral explanations for the "gift giving," including prey sharing, play, and teaching behaviors, which have previously been described for cetaceans and other higher mammals. Gift giving may occur either as a discreet behavior (that may be a sequel to one or more other behaviors such as play or food preparation), or as a part of other behaviors, such as play and/or food sharing. It is most likely a manifestation of the particular relationship between the provisioned dolphins and the human participants in the provisioning. Gift giving has become an established but infrequent part of the culture of the provisioned dolphins at Tangalooma. © ISAZ 2012 Printed in the UK.
Resumo:
The studies presented in this thesis contribute to the understanding of evolutionary ecology of three major viruses threatening cultivated sweetpotato (Ipomoea batatas Lam) in East Africa: Sweet potato feathery mottle virus (SPFMV; genus Potyvirus; Potyviridae), Sweet potato chlorotic stunt virus (SPCSV; genus Crinivirus; Closteroviridae) and Sweet potato mild mottle virus (SPMMV; genus Ipomovirus; Potyviridae). The viruses were serologically detected and the positive results confirmed by RT-PCR and sequencing. SPFMV was detected in 24 wild plant species of family Convolvulacea (genera Ipomoea, Lepistemon and Hewittia), of which 19 species were new natural hosts for SPFMV. SPMMV and SPCSV were detected in wild plants belonging to 21 and 12 species (genera Ipomoea, Lepistemon and Hewittia), respectively, all of which were previously unknown to be natural hosts of these viruses. SPFMV was the most abundant virus being detected in 17% of the plants, while SPMMV and SPCSV were detected in 9.8% and 5.4% of the assessed plants, respectively. Wild plants in Uganda were infected with the East African (EA), common (C), and the ordinary (O) strains, or co-infected with the EA and the C strain of SPFMV. The viruses and virus-like diseases were more frequent in the eastern agro-ecological zone than the western and central zones, which contrasted with known incidences of these viruses in sweetpotato crops, except for northern zone where incidences were lowest in wild plants as in sweetpotato. The NIb/CP junction in SPMMV was determined experimentally which facilitated CP-based phylogenetic and evolutionary analyses of SPMMV. Isolates of all the three viruses from wild plants were genetically similar to those found in cultivated sweetpotatoes in East Africa. There was no evidence of host-driven population genetic structures suggesting frequent transmission of these viruses between their wild and cultivated hosts. The p22 RNA silencing suppressor-encoding sequence was absent in a few SPCSV isolates, but regardless of this, SPCSV isolates incited sweet potato virus disease (SPVD) in sweetpotato plants co-infected with SPFMV, indicating that p22 is redundant for synergism between SCSV and SPFMV. Molecular evolutionary analysis revealed that isolates of strain EA of SPFMV that is largely restricted geographically in East Africa experience frequent recombination in comparison to isolates of strain C that is globally distributed. Moreover, non-homologous recombination events between strains EA and C were rare, despite frequent co-infections of these strains in wild plants, suggesting purifying selection against non-homologous recombinants between these strains or that such recombinants are mostly not infectious. Recombination was detected also in the 5 - and 3 -proximal regions of the SPMMV genome providing the first evidence of recombination in genus Ipomovirus, but no recombination events were detected in the characterized genomic regions of SPCSV. Strong purifying selection was implicated on evolution of majority of amino acids of the proteins encoded by the analyzed genomic regions of SPFMV, SPMMV and SPCSV. However, positive selection was predicted on 17 amino acids distributed over the whole the coat protein (CP) in the globally distributed strain C, as compared to only 4 amino acids in the multifunctional CP N-terminus (CP-NT) of strain EA largely restricted geographically to East Africa. A few amino acid sites in the N-terminus of SPMMV P1, the p7 protein and RNA silencing suppressor proteins p22 and RNase3 of SPCSV were also submitted to positive selection. Positively selected amino acids may constitute ligand-binding domains that determine interactions with plant host and/or insect vector factors. The P1 proteinase of SPMMV (genus Ipomovirus) seems to respond to needs of adaptation, which was not observed with the helper component proteinase (HC-Pro) of SPMMV, although the HC-Pro is responsible for many important molecular interactions in genus Potyvirus. Because the centre of origin of cultivated sweetpotato is in the Americas from where the crop was dispersed to other continents in recent history (except for the Australasia and South Pacific region), it would be expected that identical viruses and their strains occur worldwide, presuming virus dispersal with the host. Apparently, this seems not to be the case with SPMMV, the strain EA of SPFMV and the strain EA of SPCSV that are largely geographically confined in East Africa where they are predominant and occur both in natural and agro-ecosystems. The geographical distribution of plant viruses is constrained more by virus-vector relations than by virus-host interactions, which in accordance of the wide range of natural host species and the geographical confinement to East Africa suggest that these viruses existed in East African wild plants before the introduction of sweetpotato. Subsequently, these studies provide compelling evidence that East Africa constitutes a cradle of SPFMV strain EA, SPCSV strain EA, and SPMMV. Therefore, sweet potato virus disease (SPVD) in East Africa may be one of the examples of damaging virus diseases resulting from exchange of viruses between introduced crops and indigenous wild plant species. Keywords: Convolvulaceae, East Africa, epidemiology, evolution, genetic variability, Ipomoea, recombination, SPCSV, SPFMV, SPMMV, selection pressure, sweetpotato, wild plant species Author s Address: Arthur K. Tugume, Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Latokartanonkaari 7, P.O Box 27, FIN-00014, Helsinki, Finland. Email: tugume.arthur@helsinki.fi Author s Present Address: Arthur K. Tugume, Department of Botany, Faculty of Science, Makerere University, P.O. Box 7062, Kampala, Uganda. Email: aktugume@botany.mak.ac.ug, tugumeka@yahoo.com
Resumo:
Wild pigs (Sus scrofa) are widespread across many landscapes throughout the world and are considered to be an invasive pest to agriculture and the environment, or conversely a native or desired game species and resource for hunting. Wild pig population monitoring is often required for a variety of management or research objectives, and many methods and analyses for monitoring abundance are available. Here, we describe monitoring methods that have proven or potential applications to wild pig management. We describe the advantages and disadvantages of methods so that potential users can efficiently consider and identify the option(s) best suited to their combination of objectives, circumstances, and resources. This paper offers guidance to wildlife managers, researchers, and stakeholders considering population monitoring of wild pigs and will help ensure that they can fulfill their monitoring objectives while optimizing their use of resources.
Resumo:
Ninety-three giant Queensland grouper, Epinephelus lanceolatus (Bloch), were found dead in Queensland, Australia, from 2007 to 2011. Most dead fish occurred in northern Queensland, with a peak of mortalities in Cairns in June 2008. In 2009, sick wild fish including giant sea catfish, Arius thalassinus (Ruppell), and javelin grunter, Pomadasys kaakan (Cuvier), also occurred in Cairns. In 2009 and 2010, two disease epizootics involving wild stingrays occurred at Sea World marine aquarium. Necropsy, histopathology, bacteriology and PCR determined that the cause of deaths of 12 giant Queensland grouper, three wild fish, six estuary rays, Dasyatis fluviorum (Ogilby), one mangrove whipray, Himantura granulata (Macleay), and one eastern shovelnose ray, Aptychotrema rostrata (Shaw), was Streptococcus agalactiae septicaemia. Biochemical testing of 34 S.agalactiae isolates from giant Queensland grouper, wild fish and stingrays showed all had identical biochemical profiles. The 16S rRNA gene sequences of isolates confirmed all isolates were S.agalactiae; genotyping of selected S.agalactiae isolates showed the isolates from giant Queensland grouper were serotype Ib, whereas isolates from wild fish and stingrays closely resembled serotype II. This is the first report of S.agalactiae from wild giant Queensland grouper and other wild tropical fish and stingray species in Queensland, Australia.
Resumo:
Multiple Trichinella species are reported from the Australasian region although mainland Australia has never confirmed an indigenous case of Trichinella infection in humans or animals. Wildlife surveys in high-risk regions are essential to truly determine the presence or absence of Trichinella, but in mainland Australia are largely lacking. In this study, a survey was conducted in wild pigs from mainland Australia's Cape York Peninsula and Torres Strait region for the presence of Trichinella, given the proximity of a Trichinella papuae reservoir in nearby PNG. We report the detection of a Trichinella infection in a pig from an Australian island in the Torres Strait, a narrow waterway that separates the islands of New Guinea and continental Australia. The larvae were characterised as T. papuae (Kikori strain) by PCR and sequence analysis. No Trichinella parasites were found in any pigs from the Cape York Peninsula. These results highlight the link the Torres Strait may play in providing a passage for introduction of Trichinella parasites from the Australasian region to the Australian mainland. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Wild dogs (Canis lupus dingo and hybrids) are routinely controlled to protect beef cattle from predation yet beef producers are sometimes ambivalent as to whether wild dogs are a significant problem or not. This paper reports the loss of calves between birth and weaning in pregnancy-tested herds located on two beef cattle properties in south-central and far north Queensland for up to 4 consecutive years. Comparisons of lactation failures (identified when dams that previously tested pregnant were found non-lactating at weaning) were made between adjoining test herds grazed in places with or without annual (or twice annual) wild dog poison baiting programs. No correlation between wild dog relative abundance and lactation failures was apparent. Calf loss was frequently higher (three in 7 site-years, 11–32%) in baited areas than in non-baited areas (9% in 1 of 7 site-years). Predation loss of calves (in either area) only occurred in seasons of below-average rainfall, but was not related to herd nutrition. These data suggest that controlling wild dogs to protect calves on extensive beef cattle enterprises is unnecessary in most years because wild dogs do not routinely prey on calves. In those seasons when wild dog predation might occur, baiting can be counter-productive. Baiting appears to produce perturbations that change the way surviving or re-colonising wild dog populations select and handle prey and/or how they interact with livestock.
Resumo:
Globally, wild or feral pigs Sus scrofa are a widespread and important pest. Mitigation of their impacts requires a sound understanding of those impacts and the benefits and limitations of different management approaches. Here, we review published and unpublished studies to provide a synopsis of contemporary understanding of wild pig impacts and management in Australia, and to identify important shortcomings. Wild pigs can have important impacts on biodiversity values, ecosystem functioning and agricultural production. However, many of these impacts remain poorly described, and therefore, difficult to manage effectively. Many impacts are highly variable, and innovative experimental and analytical approaches may be necessary to elucidate them. Most contemporary management programmes use lethal techniques to attempt to reduce pig densities, but it is often unclear how effective they are at reducing damage. We conclude that greater integration of experimental approaches into wild pig management programmes is necessary to improve our understanding of wild pig impacts, and our ability to manage those impacts effectively and efficiently.
Resumo:
Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses. © 2014, Mary Ann Liebert, Inc.
Resumo:
Southern hairy-nosed wombats (Lasiorhinus latifrons) inhabiting degraded habitat in South Australia were recently identified with extensive hair loss and dermatitis and were in thin to emaciated body condition. Pathological and clinicopathological investigations on affected juvenile wombats identified a toxic hepatopathy suggestive of plants containing pyrrolizidine alkaloids, accompanied by photosensitive dermatitis. Hepatic disease was suspected in additional wombats on the basis of serum biochemical analysis. Preliminary toxicological analysis performed on scats and gastrointestinal contents from wombats found in this degraded habitat identified a number of toxic pyrrolizidine alkaloids consistent with ingestion of Heliotropeum europaeum. Although unpalatable, ingestion may occur by young animals due to decreased availability of preferred forages in degraded habitats and the emergence of weeds around the time of weaning of naive animals. Habitat degradation leading to malnutrition and ingestion of toxic weed species is a significant welfare issue in this species.
Resumo:
The release of myxoma virus (MYXV) and Rabbit Haemorrhagic Disease Virus (RHDV) in Australia with the aim of controlling overabundant rabbits has provided a unique opportunity to study the initial spread and establishment of emerging pathogens, as well as their co-evolution with their mammalian hosts. In contrast to MYXV, which attenuated shortly after its introduction, rapid attenuation of RHDV has not been observed. By studying the change in virulence of recent field isolates at a single field site we show, for the first time, that RHDV virulence has increased through time, likely because of selection to overcome developing genetic resistance in Australian wild rabbits. High virulence also appears to be favoured as rabbit carcasses, rather than diseased animals, are the likely source of mechanical insect transmission. These findings not only help elucidate the co-evolutionary interaction between rabbits and RHDV, but reveal some of the key factors shaping virulence evolution.