976 resultados para White-matter Damage


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spatial neglect is a neurological condition characterized by a breakdown of spatial cognition contralateral to hemispheric damage. Deficits in spatial attention toward the contralesional side are considered to be central to this syndrome. Brain lesions typically involve right fronto-parietal cortices mediating attentional functions and subcortical connections in underlying white matter. Convergent findings from neuroimaging and behavioral studies in both animals and humans suggest that the cholinergic system might also be critically implicated in selective attention by modulating cortical function via widespread projections from the basal forebrain. Here we asked whether deficits in spatial attention associated with neglect could partly result from a cholinergic deafferentation of cortical areas subserving attentional functions, and whether such disturbances could be alleviated by pro-cholinergic therapy. We examined the effect of a single-dose transdermal nicotine treatment on spatial neglect in 10 stroke patients in a double-blind placebo-controlled protocol, using a standardized battery of neglect tests. Nicotine-induced systematic improvement on cancellation tasks and facilitated orienting to single visual targets, but had no significant effect on other tests. These results support a global effect of nicotine on attention and arousal, but no effect on other spatial mechanisms impaired in neglect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

INTRODUCTION: In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic-radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing-remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients. METHODS: Brain relaxometry (T1, T2, T2*) and magnetization transfer MRI were performed at 3T in 36 RRMS patients and 18 healthy controls (HC). Multicontrast analysis was used to assess for microstructural alterations in normal-appearing (NA) tissue and lesions. A generalized linear model was computed to predict clinical performance in patients using multicontrast MRI data, conventional MRI measures as well as demographic and behavioral data as covariates. RESULTS: Quantitative T2 and T2* relaxometry were significantly increased in temporal normal-appearing white matter (NAWM) of patients compared to HC, indicating subtle microedema (P = 0.03 and 0.004). Furthermore, significant T1 and magnetization transfer ratio (MTR) variations in lesions (mean T1 z-score: 4.42 and mean MTR z-score: -4.09) suggested substantial tissue loss. Combinations of multicontrast and conventional MRI data significantly predicted cognitive fatigue (P = 0.01, Adj-R (2) = 0.4), attention (P = 0.0005, Adj-R (2) = 0.6), and disability (P = 0.03, Adj-R (2) = 0.4). CONCLUSION: Advanced MRI techniques at 3T, unraveled the nature of brain tissue damage in early MS and substantially improved clinical-radiological correlations in patients with minor deficits, as compared to conventional measures of disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schizophrenia is a complex psychiatric disorder characterized by disabling symptoms and cognitive deficit. Recent neuroimaging findings suggest that large parts of the brain are affected by the disease, and that the capacity of functional integration between brain areas is decreased. In this study we questioned (i) which brain areas underlie the loss of network integration properties observed in the pathology, (ii) what is the topological role of the affected regions within the overall brain network and how this topological status might be altered in patients, and (iii) how white matter properties of tracts connecting affected regions may be disrupted. We acquired diffusion spectrum imaging (a technique sensitive to fiber crossing and slow diffusion compartment) data from 16 schizophrenia patients and 15 healthy controls, and investigated their weighted brain networks. The global connectivity analysis confirmed that patients present disrupted integration and segregation properties. The nodal analysis allowed identifying a distributed set of brain nodes affected in the pathology, including hubs and peripheral areas. To characterize the topological role of this affected core, we investigated the brain network shortest paths layout, and quantified the network damage after targeted attack toward the affected core. The centrality of the affected core was compromised in patients. Moreover the connectivity strength within the affected core, quantified with generalized fractional anisotropy and apparent diffusion coefficient, was altered in patients. Taken together, these findings suggest that the structural alterations and topological decentralization of the affected core might be major mechanisms underlying the schizophrenia dysconnectivity disorder. Hum Brain Mapp, 36:354-366, 2015. © 2014 Wiley Periodicals, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: To review the recent findings on the relationships between delirium and cognitive decline in the elderly. RECENT FINDINGS: Current advances in the field include substantial new evidence that delirium increases the risk of dementia in patients without previous cognitive impairment and accelerates cognitive decline in patients with Alzheimer's disease. Findings on cognitive trajectories and domains affected contribute to better understanding of the clinical nature of cognitive impairment after delirium. Volume loss and disruption of white matter integrity may represent early MRI markers for long-term cognitive impairment. Neurodegenerative and low-level chronic inflammatory processes predispose to exaggerated response to incident stimuli that may precipitate both acute brain dysfunction and persisting cerebral damage. SUMMARY: Still little is known about the relationship between delirium and cognitive trajectories in the elderly, and the underlying pathophysiological mechanisms. The association of neurodegenerative and inflammatory processes appears to play an important role in the pathogenesis and the clinical course of cognitive impairment after delirium. The hypothetical role of several other factors remains to be clarified. Further clinical studies are needed to evaluate whether prevention and treatment approaches that proved to be useful to reduce delirium incidence and severity may also improve long-term outcomes, and prevent cognitive decline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Chronic kidney disease is associated with cardiovascular disease. We tested for evidence of a shared genetic basis to these traits. STUDY DESIGN: We conducted 2 targeted analyses. First, we examined whether known single-nucleotide polymorphisms (SNPs) underpinning kidney traits were associated with a series of vascular phenotypes. Additionally, we tested whether vascular SNPs were associated with markers of kidney damage. Significance was set to 1.5×10(-4) (0.05/325 tests). SETTING & PARTICIPANTS: Vascular outcomes were analyzed in participants from the AortaGen (20,634), CARDIoGRAM (86,995), CHARGE Eye (15,358), CHARGE IMT (31,181), ICBP (69,395), and NeuroCHARGE (12,385) consortia. Tests for kidney outcomes were conducted in up to 67,093 participants from the CKDGen consortium. PREDICTOR: We used 19 kidney SNPs and 64 vascular SNPs. OUTCOMES & MEASUREMENTS: Vascular outcomes tested were blood pressure, coronary artery disease, carotid intima-media thickness, pulse wave velocity, retinal venular caliber, and brain white matter lesions. Kidney outcomes were estimated glomerular filtration rate and albuminuria. RESULTS: In general, we found that kidney disease variants were not associated with vascular phenotypes (127 of 133 tests were nonsignificant). The one exception was rs653178 near SH2B3 (SH2B adaptor protein 3), which showed direction-consistent association with systolic (P = 9.3 ×10(-10)) and diastolic (P = 1.6 ×10(-14)) blood pressure and coronary artery disease (P = 2.2 ×10(-6)), all previously reported. Similarly, the 64 SNPs associated with vascular phenotypes were not associated with kidney phenotypes (187 of 192 tests were nonsignificant), with the exception of 2 high-correlated SNPs at the SH2B3 locus (P = 1.06 ×10(-07) and P = 7.05 ×10(-08)). LIMITATIONS: The combined effect size of the SNPs for kidney and vascular outcomes may be too low to detect shared genetic associations. CONCLUSIONS: Overall, although we confirmed one locus (SH2B3) as associated with both kidney and cardiovascular disease, our primary findings suggest that there is little overlap between kidney and cardiovascular disease risk variants in the overall population. The reciprocal risks of kidney and cardiovascular disease may not be genetically mediated, but rather a function of the disease milieu itself.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcohol consumption during pregnancy can potentially affect the developing fetus in devastating ways, leading to a range of physical, neurological, and behavioral alterations most accurately termed Fetal Alcohol Spectrum Disorders (FASD). Despite the fact that it is a preventable disorder, prenatal alcohol exposure today constitutes a leading cause of intellectual disability in the Western world. In Western countries where prevalence studies have been performed the rates of FASD exceed, for example, autism spectrum disorders, Down’s syndrome and cerebral palsy. In addition to the direct effects of alcohol, children and adolescents with FASD are often exposed to a double burden in life, as their neurological sequelae are accompanied by adverse living surroundings exposing them to further environmental risk. However, children with FASD today remain remarkably underdiagnosed by the health care system. This thesis forms part of a larger multinational research project, The Collaborative Initiative on Fetal Alcohol Spectrum Disorders (the CIFASD), initiated by the National Institute of Alcohol Abuse and Alcoholism (NIAAA) in the U.S.A. The general aim of the present thesis was to examine a cohort of children and adolescents growing up with fetal alcohol-related damage in Finland. The thesis consists of five studies with a broad focus on diagnosis, cognition, behavior, adaptation and brain metabolic alterations in children and adolescents with FASD. The participants consisted of four different groups: one group with histories of prenatal exposure to alcohol, the FASD group; one IQ matched contrast group mostly consisting of children with specific learning disorder (SLD); and two typically-developing control groups (CON1 and CON2). Participants were identified through medical records, random sampling from the Finnish national population registry and email alerts to students. Importantly, the participants in the present studies comprise a group of very carefully clinically characterized children with FASD as the studies were performed in close collaboration with leading experts in the field (Prof. Edward Riley and Prof. Sarah Mattson, Center for Behavioral Teratology, San Diego State University, U.S.A; Prof. Eugene Hoyme, Sanford School of Medicine, University of South Dakota, U.S.A.). In the present thesis, the revised Institute of Medicine diagnostic criteria for FASD were tested on a Finnish population and found to be a reliable tool for differentiating among the subgroups of FASD. A weighted dysmorphology scoring system proved to be a valuable additional adjunct in quantification of growth deficits and dysmorphic features in children with FASD (Study 1). The purpose of Study 2 was to clarify the relationship between alcohol-related dysmorphic features and general cognitive capacity. Results showed a significant correlation between dysmorphic features and cognitive capacity, suggesting that children with more severe growth deficiency and dysmorphic features have more cognitive limitations. This association was, however, only moderate, indicating that physical markers and cognitive capacity not always go hand in hand in individuals with FASD. Behavioral problems in the FASD group proved substantial compared to the typically developing control group. In Study 3 risk and protective factors associated with behavioral problems in the FASD group were explored further focusing on diagnostic and environmental factors. Two groups with elevated risks for behavioral problems emerged: length of time spent in residential care and a low dysmorphology score proved to be the most pervasive risk factor for behavioral problems. The results underscore the clinical importance of appropriate services and care for less visibly alcohol affected children and highlight the need to attend to children with FASD being raised in institutions. With their background of early biological and psychological impairment compounded with less opportunity for a close and continuous caregiver relationship, such children seem to run an especially great risk of adverse life outcomes. Study 4 focused on adaptive abilities such as communication, daily living skills and social skills, in other words skills that are important for gradually enabling an independent life, maintain social relationships and allow the individual to become integrated into society. The results showed that adaptive abilities of children and adolescents growing up with FASD were significantly compromised compared to both typically-developing peers and IQ-matched children with SLD. Clearly different adaptive profiles were revealed where the FASD group performed worse than the SLD group, who in turn performed worse than the CON1 group. Importantly, the SLD group outperformed the FASD group on adaptive behavior in spite of comparable cognitive levels. This is the first study to compare adaptive abilities in a group of children and adolescents with FASD relative to both a contrast group of IQ-matched children with SLD and to a group of typically-developing peers. Finally, in Study 5, through magnetic resonance spectroscopic imaging (MRS) evidence of longstanding neurochemical alterations were observed in adolescents and young adults with FASD related to alcohol exposure in utero 14-20 years earlier. Neurochemical alterations were seen in several brain areas: in frontal and parietal cortices, corpus callosum, thalamus and frontal white matter areas as well as in the cerebellar dentate nucleus. The findings are compatible with neuropsychological findings in FASD. Glial cells seemed to be more affected than neurons. In conclusion, more societal efforts and resources should be focused on recognizing and diagnosing FASD, and supporting subgroups with elevated risk of poor outcome. Without adequate intervention children and adolescents with FASD run a great risk of marginalization and social maladjustment, costly not only to society but also to the lives of the many young people with FASD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

White matter injury characterized by damage to myelin is an important process in hypoxic-ischemic brain damage (HIBD). Because the oligodendrocyte-specific isoform of neurofascin, neurofascin 155 (NF155), and its association with lipid rafts are essential for the establishment and stabilization of the paranodal junction, which is required for tight interaction between myelin and axons, we analyzed the effect of monosialotetrahexosyl ganglioside (GM1) on NF155 expression and its association with lipid rafts after HIBD in Sprague-Dawley rats, weighing 12-15 g, on day 7 post-partum (P7; N = 20 per group). HIBD was induced on P7 and the rats were divided into two groups: one group received an intraperitoneal injection of 50 mg/kg GM1 three times and the other group an injection of saline. There was also a group of 20 sham-operated rats. After sacrifice, the brains of the rats were removed on P30 and studied by immunochemistry, SDS-PAGE, Western blot analysis, and electron microscopy. Staining showed that the saline group had definite rarefaction and fragmentation of brain myelin sheaths, whereas the GM1 group had no obvious structural changes. The GM1 group had 1.9-2.9-fold more GM1 in lipid rafts than the saline group (fraction 3-6; all P < 0.05) and 0.5-2.4-fold higher expression of NF155 in lipid rafts (fraction 3-5; all P < 0.05). Injection of GM1 increased the content of GM1 in lipid rafts as well as NF155 expression and its lipid raft association in HIBD rat brains. GM1 may repair the structure of lipid rafts, promote the association of NF155 (or other important proteins) with lipid rafts, stabilize the structure of paranodes, and eventually prevent myelin sheath damage, suggesting a novel mechanism for its neuroprotective properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo desta investigação foi avaliar o padrão degenerativo de diversos tratos de substância branca após lesão isquêmica estriatal, correlacionando o processo degenerativo com os padrões de ativação microglial e expressão de Nogo-A. Para isso, foi induzida isquemia focal com injeção estereotáxica de endotelina no estriado de ratos adultos, e nos animais controle apenas injetou-se solução salina estéril. Os animais foram perfundidos 3, 7, 14 e 30 dias após isquemia. O cérebro removido, pós-fixado, crioprotegido, cortado em criostato e os cortes obtidos submetidos à investigação imunoistoquímica com os seguintes anticorpos: Anti-GFAP (1:2000,Dako), Anti-Tau-1 (1:500,Chemicon), Anti-MBP (1:100,Chemicon International), Anti-Nogo A (1:100,Invitrogen), Anti-Iba1 (1:1000, WAKO), Anti-ED1 (1:500, Serotec) e Anti-MHC-II (1:100 Abcam), além da visualização do padrão lesivo com violeta de cresila. As lâminas marcadas pelos diferentes métodos foram avaliadas qualitativamente e algumas também quantitativamente (Anti-Nogo A, Anti-ED1, Anti-MHC-II e Anti-Tau-1), com contagens realizadas no estriado e no corpo caloso. Os dados foram tabulados, submetidos à análise estatística pelo teste de Tukey (p<0,05) e capturadas micrografias dos achados mais representativos. As lâminas coradas com violeta de cresila revelaram um aumento da densidade celular pela infiltração de células inflamatórias à área isquêmica, com aumento expressivo ao 7º dia. Nas lâminas imunomarcadas para GFAP foi encontrado aumento progressivo da população de astrócitos, assim como um aumento do volume celular em 7 e 14 dias. Oligondendrócitos patológicos marcados com Tau-1 tiveram pico de marcação ao 3º dia no estriado e ao 7º dia no corpo caloso, e a perda de compactação de mielina identificada pelo MBP foi melhor observada ao 14º dia, nos diferentes tratos. A ativação microglial identificada pelas diferentes imunomarcações apresentou seu pico ao 7º dia, tanto em estriado como em corpo caloso, porém no corpo caloso com um número muito menor quando comparado com o estriado. A morfologia microglial sofreu variações, sendo encontrado o fenótipo ramificado nos animais controles, assim como nos tempos precoces e tardios pós isquemia e o padrão amebóide/fagocítico ao 7º dia, coincidente com o maior número de células ativadas. A contagem de células Nogo-A + teve seu pico observado ao 3º dia no estriado, não sendo observadas no corpo caloso diferenças de expressão de Nogo-A entre 3 a 14 dias, apenas uma diminuição quando comparado a 30 dias. Sendo assim, microinjeções de ET-1 no estriado induziram conspícua perda tecidual, concomitante com ativação microglial progressiva, astrocitose, perda da imunoreatividade para proteína básica de mielina e lesão de oligodendrócitos em diversos tempos de sobrevida após isquemia focal. Estes eventos acometem alguns tratos de SB, como o corpo caloso. O estabelecimento da evolução temporal destes eventos neuropatológico é a base para estudos futuros, nos quais se deverá manipular a resposta inflamatória com intuito de minimizar estas alterações teciduais.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The diagnosis of vascular dementia (VaD) describes a group of various vessel disorders with different types of vascular lesions that finally contribute to the development of dementia. Most common forms of VaD in the elderly brain are subcortical vascular encephalopathy, strategic infarct dementia, and the multi infarct encephalopathy. Hereditary forms of VaD are rare. Most common is the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Sporadic forms of VaD are caused by degenerative vessel disorders such as atherosclerosis, small vessel disease (SVD) including small vessel arteriosclerosis, arteriolosclerosis, and lipohyalinosis, and cerebral amyloid angiopathy (CAA). Less frequently inflammatory vessel disorders and tumor-associated vessel lesions (e. g. angiocentric T-cell or angiotropic large cell lymphoma) can cause symptoms of dementia. Here, we review and discuss the impact of vessel disorders to distinct vascular brain tissue lesions and to the development of dementia in elderly individuals. The impact of coexisting neurodegenerative pathology in the elderly brain to VaD as well as the correlation between SVD and CAA expansion in the brain parenchyma with that of Alzheimer's disease (AD)-related pathology is highlighted. We conclude that "pure" VaD is rare and most frequently caused by infarctions. However, there is a significant contribution of vascular lesions and vessel pathology to the development of dementia that may go beyond tissue damage due to vascular lesions. Insufficient blood blow and alterations of the perivascular drainage mechanisms of the brain may also lead to a reduced protein clearance from extracellular space and subsequent increase of proteins in the brain parenchyma, such as the amyloid beta-protein, and foster, thereby, the development of AD-related neurodegeneration. As such, it seems to be important for clinical practice to consider treatment of potentially coexisting AD pathology in cognitively impaired patients with vascular lesions. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vascular pathology, including blood-brain/spinal cord barrier (BBB/BSCB) alterations, has recently been recognized as a key factor possibly aggravating motor neuron damage, identifying a neurovascular disease signature for ALS. However, BBB/BSCB competence in sporadic ALS (SALS) is still undetermined. In this study, BBB/BSCB integrity in postmortem gray and white matter of medulla and spinal cord tissue from SALS patients and controls was investigated. Major findings include (1) endothelial cell damage and pericyte degeneration, (2) severe intra- and extracellular edema, (3) reduced CD31 and CD105 expressions in endothelium, (4) significant accumulation of perivascular collagen IV, and fibrin deposits (5) significantly increased microvascular density in lumbar spinal cord, (6) IgG microvascular leakage, (7) reduced tight junction and adhesion protein expressions. Microvascular barrier abnormalities determined in gray and white matter of the medulla, cervical, and lumbar spinal cord of SALS patients are novel findings. Pervasive barrier damage discovered in ALS may have implications for disease pathogenesis and progression, as well as for uncovering novel therapeutic targets. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 mu M CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFN gamma through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPAR gamma receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2 alpha, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2 alpha induced by LPS/IFN gamma. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation. Cell Death and Disease (2012) 3, e331; doi:10.1038/cddis.2012.71; published online 28 June 2012