965 resultados para Web-Assisted Error Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted to Faculdade de Ciências e Tecnologia - Universidade Nova de Lisboa in fulfilment of the requirements for the degree of Doctor of Philosophy (Biochemistry - Biotechnology)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical sensors and biosensors are widely used to detect various kinds of protein target biomolecules. Molecularly Imprinted Polymers (MIPs) have raised great interest in this area, because these act as antibody-like recognition materials, with high affinity to the template molecule. Compared to natural antibodies, these are also of lower cost and higher stability. There are different types of supports used to carry MIP materials, mostly of these made of gold, favourably assembled on a Screen Printed Electrode (SPE) strategy. For this work a new kind of support for the sensing layer was developed: conductive paper. This support was made by modifying first cellulose paper with paraffin wax (to make it waterproof), and casting a carbon-ink on it afterwards, to turn it conductive. The SPAM approach previously reported in1 was employed herein to assemble to MIP sensing material on the conductive paper. The selected charged monomers were (vinylbenzyl) trimethlammonium chloride (positive charge) or vinylbenzoic acid (negative charge), used to generate binding positions with single-type charge (positive or negative). The non-specific binding area of the MIP layer was assembled by chronoamperometry-assisted polymerization (at 1 V, for 60, 120 or 180 seconds) of vinylbenzoate, cross-linked with ethylene glycol vinyl ether. The BSA biomolecules lying within the polymeric matrix were removed by Proteinase K action. All preparation stages of the MIP assembly were followed by FTIR, Raman spectroscopy and, electrochemical analysis. In general, the best results were obtained for longer polymerization times and positively charged binding sites (which was consistent with a negatively-charged protein under physiological pH, as BSA). Linear responses against BSA concentration ranged from 0.005 to 100 mg/mL, in PBS buffer standard solutions. The sensor was further calibrated in standard solutions that were prepared in synthetic or real urine, and the analytical response became more sensitive and stable. Compared to the literature, the detection capability of the developed device is better than most of the reported electrodes. Overall, the simplicity, low cost and good analytical performance of the BSA SPE device, prepared with positively charged binding positions, seems a suitable approach for practical application in clinical context. Further studies with real samples are required, as well as gathering with electronic-supporting devices to allow on-site readings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel reusable molecularly imprinted polymer (MIP) assembled on a polymeric layer of carboxylated poly(vinyl chloride) (PVCsingle bondCOOH) for myoglobin (Myo) detection was developed. This polymer was casted on the gold working area of a screen printed electrode (Au-SPE), creating a novel disposable device relying on plastic antibodies. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and Fourier transform infrared spectroscopy (FTIR) studies confirmed the surface modification. The MIP/Au-SPE devices displayed a linear behaviour in EIS from 0.852 to 4.26 μg mL−1, of positive slope 6.50 ± 1.48 (kΩ mL μg−1). The limit of detection was 2.25 μg mL−1. Square wave voltammetric (SWV) assays were made in parallel and showed linear responses between 1.1 and 2.98 μg mL−1. A current decrease was observed against Myo concentration, producing average slopes of −0.28 ± 0.038 μA mL μg−1. MIP/Au-SPE also showed good results in terms of selectivity. The error% found for each interfering species were 7% for troponin T (TnT), 11% for bovine serum albumin (BSA) and 2% for creatine kinase MB (CKMB), respectively. Overall, the technical modification over the Au-SPE was found a suitable approach for screening Myo in biological fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Prolonged survival of patients under HAART has resulted in new demands for assisted reproductive technologies. HIV serodiscordant couples wish to make use of assisted reproduction techniques in order to avoid viral transmission to the partner or to the newborn. It is therefore essential to test the effectiveness of techniques aimed at reducing HIV and HCV loads in infected semen using molecular biology tests. METHODS: After seminal analysis, semen samples from 20 coinfected patients were submitted to cell fractioning and isolation of motile spermatozoa by density gradient centrifugation and swim-up. HIV and HCV RNA detection tests were performed with RNA obtained from sperm, seminal plasma and total semen. RESULTS: In pre-washing semen, HIV RNA was detected in 100% of total semen samples, whereas HCV RNA was concomitantly amplified in only one specimen. Neither HIV nor HCV were detected either in the swim-up or in the post-washing semen fractions. CONCLUSIONS: Reduction of HIV and/or HCV shedding in semen by density gradient centrifugation followed by swim-up is an efficient method. These findings lead us to believe that, although semen is rarely found to contain HCV, semen processing is highly beneficial for HIV/HCV coinfected individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complexity of systems is considered an obstacle to the progress of the IT industry. Autonomic computing is presented as the alternative to cope with the growing complexity. It is a holistic approach, in which the systems are able to configure, heal, optimize, and protect by themselves. Web-based applications are an example of systems where the complexity is high. The number of components, their interoperability, and workload variations are factors that may lead to performance failures or unavailability scenarios. The occurrence of these scenarios affects the revenue and reputation of businesses that rely on these types of applications. In this article, we present a self-healing framework for Web-based applications (SHõWA). SHõWA is composed by several modules, which monitor the application, analyze the data to detect and pinpoint anomalies, and execute recovery actions autonomously. The monitoring is done by a small aspect-oriented programming agent. This agent does not require changes to the application source code and includes adaptive and selective algorithms to regulate the level of monitoring. The anomalies are detected and pinpointed by means of statistical correlation. The data analysis detects changes in the server response time and analyzes if those changes are correlated with the workload or are due to a performance anomaly. In the presence of per- formance anomalies, the data analysis pinpoints the anomaly. Upon the pinpointing of anomalies, SHõWA executes a recovery procedure. We also present a study about the detection and localization of anomalies, the accuracy of the data analysis, and the performance impact induced by SHõWA. Two benchmarking applications, exercised through dynamic workloads, and different types of anomaly were considered in the study. The results reveal that (1) the capacity of SHõWA to detect and pinpoint anomalies while the number of end users affected is low; (2) SHõWA was able to detect anomalies without raising any false alarm; and (3) SHõWA does not induce a significant performance overhead (throughput was affected in less than 1%, and the response time delay was no more than 2 milliseconds).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in the fufillment of the requirements for the Degree of Master in Biomedical Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eradication of code smells is often pointed out as a way to improve readability, extensibility and design in existing software. However, code smell detection remains time consuming and error-prone, partly due to the inherent subjectivity of the detection processes presently available. In view of mitigating the subjectivity problem, this dissertation presents a tool that automates a technique for the detection and assessment of code smells in Java source code, developed as an Eclipse plugin. The technique is based upon a Binary Logistic Regression model that uses complexity metrics as independent variables and is calibrated by expert‟s knowledge. An overview of the technique is provided, the tool is described and validated by an example case study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.