989 resultados para Water-table Fluctuations


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ration of mass species of infusoria and their consumption of phytoplankton in the 0-200 m layer of antarctic and subantarctic waters of the Pacific Ocean are evaluated from microscopic study of digestive vacuoles and counts of algae present in them. In antarctic waters tintinnids, which make up 63-75% of total biomass of infusoria, consumed 19-27% of biomass of nannophytoplankton or 0.1-0.3% of biomass of all phytoplankton. In Subantarctic the main infusorial consumers of phytoplankton were large strombidia, which were dominant in infusorial biomass and in their areas of maximum development consumed 14% of biomass of nannophytoplankton, equivalent to about 10% of total biomass of phytoplankton in the 0-200 m layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies were carried out mostly in the area of RMS Titanic wreck site (41°44'N, 49°57'W) located above the continental slope and the south of the Grand Banks of Newfoundland. In a period from 18.06 to 24.09.2001 five surveys of production characteristics of surface phytoplankton were conducted over 5-9 days. Mean values of these characteristics obtained during the surveys were 9.2-11.7 mg C/m**3 per day for primary production (C_phs), 0.102-0.188 mg/m**3 for chlorophyll a (C_chls), and 4.44-7.42 mg C/mg chl. a per hour for assimilation number (AN). The main reason for low C_phs variability was a significant inverse relationship (R=-0.66) between AN and C_chls found over the research area. When cold shelf waters dominated in the area (27.07 to 19.08.2001), C_chls values for the slope region (0.125+/-0.031 µg/l) and for the outer shelf (0.130+/-0.040 µg/l) were similar. During strengthening of influence of warmer slope waters within area (from 29.08 to 13.09.2001), C_chls concentration within surface waters of the outer shelf was 0.152+/-0.039 µg/l and exceeded one for the slope region (0.094+/-0.004 µg/l) by factor 1.6. Against the background of low Cchls values, the High values of integral primary production in the water column (510-1010 mg C/m**2 per day) at low C_chls values measured within the area were determined both by high assimilation activity of phytoplankton and by the deep (30-40 m) maximum of primary production. Main reasons for formation of such a maximum were high chlorophyll concentration within the layer of the deep chlorophyll maximum (up to 0.5-2.5 µg/l) and in the relatively high solar irradiance within this layer varying from 1.4 to 8.6% of subsurface PAR.