969 resultados para Water barrier properties
Resumo:
This project has been developed to evaluate the possible relationship between the cesspit (pit latrine) in as far as it degrades the quality of underground water. Its importance is due to the fact that in the rural communities in the State of São Paulo (Brazil) this type of cesspit is very common as a means of sewage disposal and these communities use underground water for their supply of drinking water. Rural properties distributed over the rural area in the municipality of São José do Rio Preto were selected. A preliminary study was then set up to determine the social situation and health of the households as well as qualitative evaluations on the type of water supply and sewage disposal of these communities. Campaigns of water sampling then followed and laboratory analyses of water taken from wells were carried out. Parameters were set up to evaluate the potability according to Brazilian legislation (2004) paying attention to microbiologic (coliforms, Crytosporidium sp., and adenovirus). The analyses showed evidence of possible interaction between the wells and the sewage effluents and drainage in these communities. A PCR reaction to detect adenovirus showed a presence in 53.3% of the samples. The tests for the detection of Cryotosporidium sp all showed a negative result.
Resumo:
Silver nanoparticles have high temperature stability and low volatility, and at the nanoscale are known to be an effective antifungal and antimicrobial agent. The present investigation involves the synthesis of silver nanoparticle/carboxymethylcellulose nanocomposites. The nanoparticles synthesised in this study had sizes in the range of 100 and 40 nm. The nanocomposites formed by a combination of metallic nanoparticles and carboxymethylcellulose were characterised by contact angle measurements, solubility tests, thermal and mechanical analyses, and morphological images. Improvements in the hydrophobic properties were observed with inclusion of the nanoparticles in the nanocomposites, with the best results occurring after the addition of 40 nm nanoparticles in a carboxymethylcellulose matrix. The silver nanoparticles tend to occupy the empty spaces in the pores of the carboxymethylcellulose matrix, inducing the collapse of these pores and thereby improving the tensile and barrier properties of the film. Copyright © 2013 American Scientific Publishers All rights reserved.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nano-biocomposites based on a biodegradable bacterial copolyester, poly(hydroxybutyrate-co-hydroxyvalerate), have been elaborated with an organo-modified montmorillonite (OMMT) clay as nanofiller, and acetyl tributyl citrate as plasticizer. The corresponding (nano)structures, thermal and mechanical properties, permeability, and biodegradability have been determined. Polyhydroxyalkanoates are very thermal sensitive then to follow the degradation the corresponding matrices have been analyzed by size exclusion chromatography. The results indicate that the addition of the plasticizer decreases the thermo-mechanical degradation, during the extrusion. These nano-biocomposites show an intercalated/exfoliated structure with good mechanical and barrier properties, and an appropriated biodegradation kinetic. Intending to understand the changes in the thermal properties, the nano-biocomposites were characterized by thermal gravimetric analysis and differential scanning calorimetry. The presence of the OMMT clay did not influence significantly the transition temperatures. However, the filler not only acted as a nucleating agent which enhanced the crystallization, but also as a thermal barrier, improving the thermal stability of the biopolymer. The results indicated that the addition of the plasticizer reduces the glass transition temperature and the crystalline melting temperature. The plasticizer acts as a processing aid and increases the processing temperature range (lower melting temperature).
Resumo:
Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.
Resumo:
Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.
Resumo:
Intestinal health is essential for the health of the body since the gastro-intestinal mucosa is the main site of interaction with the external environment, as well as the major area colonized by the microbiota. Intestinal health relies on proper barrier function, epithelial integrity and related mechanisms of protection (mucous layer, tight junctions, immune and inflammatory system). In pigs, during the weaning transition, intestinal inflammation and barrier integrity play a crucial role in regulating intestinal health and, consequently, pig’s health, growth and productivity. The aim of the project was to assess the impact of different nutritional strategies on the intestinal health of weaning piglets with reference to the inflammatory status and epithelial integrity. Therefore, in vivo trials were conducted to test the in-feed supplementation with zinc, tributyrin, or organic acids and nature-identical compounds (NIC) to weaning piglets. All the dietary interventions positively impacted the intestinal inflammatory status and, as a consequence, improved epithelial integrity by modulating tight junctions proteins (zinc or tributyrin) or by enhancing barrier properties measured with Ussing chambers (organic acids and NIC). These findings highlight that intestinal inflammation and barrier function are strictly linked, and that the control of inflammation is essential for adequate barrier function. In addition, in zinc trial and organic acids and NIC trial, better intestinal health could successfully result in better growth performance, as aimed for pig production improvement. To conclude, this work shows that dietary supplementation with bio-active substances such as zinc, tributyrin or organic acids and NIC may improve intestinal health of weaning piglets modulating intestinal inflammatory stress and barrier integrity and allowing better piglet’s health, growth and productivity.
Resumo:
Investigates multiple processing parameters, includingpolymer type, filler type, processing technique, severity of SSSP (Solid-state shear pulverization)processing, and postprocessing, of SSSP. HDPE and LLDPE polymers with pristine clay and organo-clay samples are explored. Effects on crystallization, high-temperature behavior, mechanicalproperties, and gas barrier properties are examined. Thermal, mechanical, and morphological characterization is conducted to determine polymer/filler compatibility and superior processing methods for the polymer-clay nanocomposites.
Resumo:
Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.
Resumo:
Three fundamental types of suppressor additives for copper electroplating could be identified by means of potential Transient measurements. These suppressor additives differ in their synergistic and antagonistic interplay with anions that are chemisorbed on the metallic copper surface during electrodeposition. In addition these suppressor chemistries reveal different barrier properties with respect to cupric ions and plating additives (Cl, SPS). While the type-I suppressor selectively forms efficient barriers for copper inter-diffusion on chloride-terminated electrode surfaces we identified a type-II suppressor that interacts non-selectively with any kind of anions chemisorbed on copper (chloride, sulfate, sulfonate). Type-I suppressors are vital for the superconformal copper growth mode in Damascene processing and show an antagonistic interaction with SPS (Bis-Sodium-Sulfopropyl-Disulfide) which involves the deactivation of this suppressor chemistry. This suppressor deactivation is rationalized in terms of compositional changes in the layer of the chemisorbed anions due to the competition of chloride and MPS (Mercaptopropane Sulfonic Acid) for adsorption sites on the metallic copper surface. MPS is the product of the dissociative SPS adsorption within the preexisting chloride matrix on the copper surface. The non-selectivity in the adsorption behavior of the type-II suppressor is rationalized in terms of anion/cation pairing effects of the poly-cationic suppressor and the anion-modified copper substrate. Atomic-scale insights into the competitive Cl/MPS adsorption are gained from in situ STM (Scanning Tunneling Microscopy) using single crystalline copper surfaces as model substrates. Type-III suppressors are a third class of suppressors. In case of type-land type-II suppressor chemistries the resulting steady-state deposition conditions are completely independent on the particular succession of additive adsorption. In contrast to that a strong dependence of the suppressing capabilities on the sequence of additive adsorption ("first comes, first serves" principle) is observed for the type-IIIsuppressor. This behavior:is explained by a suppressor barrier that impedes not only the copper inter-diffusion but also the transport of other additives (e.g. SPS) to the copper surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
The study of proton conductance across artificial membranes has revealed a surprisingly high permeability for H+, (Pnet H+). A high Pnet H+ is difficult to reconcile with the biological requirement for the maintenance of pH gradients across the plasma membranes of cells, organellar study was undertaken to examine the role played by cholesterol and phospholipid fatty acid side chain composition in determining how well a membrane will function as a barrier to acid. The effects of counter-ion movement on acidification rates were examined in order to interpret the data obtained from variations in membrane composition. In phosphate buffered saline solutions, vesicle membranes composed of unsaturated fatty acid phosphatidylcholines proved to be poorer barriers to acid than membranes composed of saturated fatty acids. The barrier properties of these membranes could be ranked in the following order: DPL, (palmitic) $>$ Egg PC, (mixed chains) $>$ DLL, (linoleic), with DPL being the most effective in maintaining a one pH unit gradient near neutrality. Cholesterol decreased acidification rates of membranes made from the unsaturated phosphatidylcholines Egg PC and DLL, but enhanced acidification rates in vesicle membranes composed of the saturated phospholipid DPL. The cholesterol and fatty acid side chain effects were mediated by changes in membrane fluidity, with more rigid bilayers forming better barriers to acid. Experimental evidence was obtained which confirmed the Pnet H+ is very high relative to the permeabilities of other ions. Counter-ion controlled acidification rates depended on the size and charge of the ion which was moving in order to maintain electroneutrality. The biological relevance of a high intrinsic Pnet H+ and the possible role of counter-ion controlled acidification were discussed. ^
Resumo:
Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on "live" and "dead" specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([DeltaCO3]aragonite) below 15 µmol/kg. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [DeltaCO3]aragonite > 15 µmol/kg). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.