930 resultados para Wastewater Systems Effluent Regulations
Resumo:
O processo produtivo industrial pode gerar uma grande quantidade de efluentes líquidos. Esses efluentes, quando não tratados, podem poluir o solo e a água, podendo causar grande impacto ambiental. Nesse sentido é imprescindível que todas as indústrias que geram efluentes líquidos possuam uma estação de tratamento. Porém, para que a estação esteja permanentemente funcionando de acordo com seu objetivo, essa deve ser rotineiramente avaliada. Dessa forma, a avaliação de desempenho para Estação de Tratamento de Efluentes Industriais (ETEI) se torna uma ferramenta importante para a manutenção da eficiência da estação, pois se justifica por procurar pontos vulneráveis da planta de tratamento fornecendo os subsídios necessários à elaboração do diagnóstico e projetos de adequação dos sistemas, permitindo que os efluentes tratados fiquem em conformidade com as exigências estabelecidas pela legislação ambiental. Neste trabalho, foi elaborada uma proposta metodológica, formada por um roteiro, composto por níveis de questionamentos, que auxilia o avaliador na análise de desempenho da ETEI. Complementando esse roteiro foram elaboradas algumas listas de verificação que contribuem para guiar o avaliador em suas análises. Na elaboração das listas, manuais desenvolvidos em diversos países foram considerados. As listas de verificação incluem perguntas para a avaliação dos dados gerais da indústria, para seu Sistema de Gestão Ambiental (SGA) e para alguns sistemas e unidades operacionais da estação de tratamento. Para exemplificar um dos níveis de questionamento do roteiro foi incluído um estudo de caso, no qual o afluente e o efluente de uma indústria mineradora foram avaliados através da técnica estatística multivariada Análise de Componentes Principais (ACP), para demonstração do desempenho da estação de tratamento. O resultado da avaliação realizada demonstrou um bom desempenho da ETEI em tratar os efluentes líquidos. Espera-se, portanto, que este trabalho seja útil para a avaliação de desempenho em plantas de tratamento de efluentes industriais.
Resumo:
Em várias regiões do mundo, assim como no Brasil, um alto percentual da população e até comunidades inteiras não têm acesso a um sistema de tratamento de esgoto centralizado, sendo comum o uso das fossas sépticas e/ou sumidouros e, em muitos casos, os esgotos são lançados in natura diretamente nos corpos hídricos. Com o objetivo de oferecer uma alternativa tecnológica de baixo custo de implantação e operação com vistas à minimização dos impactos ambientais e em atendimento a pequenas comunidades isoladas e de interesse social, o presente projeto desenvolveu com base em sistemas apresentados na literatura, um ecossistema engenheirado compacto para o tratamento de esgoto domiciliar de pequenos geradores. O sistema é composto por tratamento preliminar (caixa controladora de vazão e caixa de gordura), primário (fossa séptica), secundário (filtro aerado submerso e decantador secundário) e um conjunto de tanques vegetados por macrófitas aquáticas (Eichhornia crassipes, Schoenoplectus sp., Panicum cf. racemosum) intercalados por um tanque de algas para remoção da carga poluidora remanescente e nutrientes. O sistema foi instalado no CEADS/UERJ na Vila de Dois Rios, Ilha Grande, litoral Sul do Rio de Janeiro, operado e monitorado desde Abril de 2009, sendo que o presente estudo referese aos primeiros 200 dias de monitoramento. A remoção da carga poluidora foi monitorada na vazão de 200 L/h, posteriormente corrigida para 52 L/h, almejando alcançar os padrões de lançamento da Resolução CONAMA 357 e a NBR 13969 da ABNT, para os parâmetros de OD, pH, Temperatura, Nitrato, N amoniacal, DBO5, DQO, SSD, Cloreto e, Óleos e Graxas e outros parâmetros não incluídos na Resolução (Cond. Elétrica, COT, Alcalinidade, Dureza, Nitrito, Fósforo total e demais Sólidos (ST, SST, SSV, SSF e SDT ). Os resultados obtidos indicam que o sistema foi mais eficiente quando operado na vazão de 52 L/h, quando apresentou as seguintes taxas de remoção: 96 % (Nitrito); 71 % (Nitrato); 47 % (N amoniacal); 96,7 % (DQO); 95,7 % (DBO5); 10 % (Fósforo total). O sistema apresentou uma evolução ao longo do tempo de operação e após a redução na vazão, garantiu o enquadramento de 12 dos 14 parâmetros analisados (exceto N amoniacal e Fósforo total), nos padrões de lançamento contemplados pela Legislação Federal, CONAMA 357 e Legislação Estadual do RJ, SP, MG e GO. Para aumento da eficiência de tratamento, recomenda-se redimensionamento do filtro aerado submerso-decantador e tanques vegetados, com base nas recomendações do PROSAB 2.
Resumo:
The impact of waste discharge on fishery resources is a matter of great concern. The accepted norm in all environmental impact assessment studies is to avoid areas of high fishery potential while locating a marine outfall. Contemplating on this aspect a case study was conducted in the Amba River estuary before and after the establishment of a petrochemical complex at Nagothane. The treated wastewater from this complex is released through a subsurface outfall after adopting effective control measures for marine disposal of waste. Experimental trawling was done at five locations covering a distance of 30 km during 1990 to 1991. The catch rate within the estuary varied from 0.6 to 255 kg/h (av 24 kg/h). The trend indicated considerable decrease in fishery potential from the mouth of the estuary (av 64 kg/h) to the upstream location (av 11 kg/h). A total of 49 species of fishes, 16 species of prawns, 7 species of crabs and 1 species of lobster were identified from the collections. Number of species gradually increased from the interior segment at Dharamtar (8) to the outer area near Revas (18). A comparison of the quantitative and qualitative nature of the post outfall and pre outfall data revealed only marginal difference. The study indicates that if necessary precautions are taken to render the waste harmless the marine ecology will hardly be affected.
Resumo:
The aim of the seawater irrigation system (SIS) is to clean up shrimp pond effluent and provide high quality seawater for shrimp farming. The system has 3 components: water intake; treatment reservoir and discharge system. There are criteria for site selection because shrimp farmers are required to form associations so they can work closely together. The construction site must be on the coastal area outside a mangrove forest and located away from a production agricultural area. All construction sites must have undergone an environmental impact assessment, and should be located on the area listed in Thailand's Coastal Zone Management Plan. Five SIS projects, which cover a culture area of 6,500 ha with 1,300 farmers (families), were completed and operated. The Department of Fisheries has planned for another 28 projects, that will cover almost 44,000 ha of culture area.
Resumo:
The pigments (melanoidins) in molasses wastewater are refractory to conventional biological treatment. Ferric chloride was used as coagulant to remove color and chemical oxygen demand (COD) from molasses effluent. Using jar test procedure, main operating conditions such as pH and coagulant dosage were investigated. Under the optimum conditions, up to 86% and 96% of COD and color removal efficiencies were achieved. Residual turbidity in supernatant was less than 5 NTU and Fe3+ concentration was negligible because of effective destabilization and subsequent sedimentation. The results of high performance size exclusion chromatography (HPSEC) show that low molecular weight (MW) fraction of melanoidins is more reactive than high MW fraction and increase in the concentration of the lowest MW organic group is related to the capacity of charge neutralization. Aggregate size measurement reveals the size effect on the settleability of flocs formed, with larger flocs settling more rapidly. Charge neutralization and co-precipitation are proposed as predominant coagulation mechanism under the optimum conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).
Resumo:
Coagulation/flocculation process was applied in the polishing treatment of molasses wastewater on a bench-scale. Important operating variables, including coagulant type and dosage, solution pH, rapid mixing conditions as well as the type and dosage of polyeletrolytes were investigated based on the maximum removal efficiencies of chemical oxygen demand (COD) and color, residual turbidity and settling characteristics of flocs. HPSEC was utilized to evaluate the removal of molecular weight fractions of melanoidins-dominated organic compounds. Experimental results indicate that ferric chloride was the most effective among the conventional coagulants, achieving 89% COD and 98% color eliminations; while aluminum sulfate was the least effective, giving COD and color reductions of 66% and 86%, respectively. In addition to metal cations, counter-ions exert significant influence on the coagulation performance since Cl--based metal salts attained better removal efficiency than SO42--based ones at the optimal coagulant dosages. Coagulation of molasses effluent is a highly pH-dependent process, with better removal efficiency achieved at lower pH levels. Rapid mixing intensity, rather than rapid mixing time, has relatively strong influence on the settling characteristics of flocs formed. Lowering mixing intensity resulted in increasing settling rate but the accumulation of floating flocs. When used as coagulant aids, synthetic polyelectrolytes showed little effects on the improvement in organic removal. On the other hand, cationic polyacrylamide was observed to substantially enhance the settleability of flocs as compared to anionic polyacrylamide. The effects of rapid mixing conditions and polymer flocculants on the coagulation performance were discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Two sets of small scale systems of staged, vertical-flow constructed wetlands (VFCW) were operated in a greenhouse to study the purification of dibutyl phthalate (DBP) in admeasured water. Each system consisted of two chambers in which water flowed downward in chamber I and then upward in chamber 2. The systems were intermittently fed with wastewater under a hydraulic load of 420 mm(.)d(-1). The measured influent concentrations of DBP in the experimental system were 9.84 mg(.)l(-1), while the other system was used as a control and received no DBP. Effluent concentrations of the treated system averaged 5.82 mug(.)l(-1) and were far below the Chinese DBP discharge standard of less than or equal to0.2 mg(.)l(-1). These results indicate the potential purification capacity of this new kind of constructed wetland in removing DBP from a polluted water body.
Resumo:
Petrochemical plastics/polymers are a common feature of day to day living as they occur in packaging, furniture, mobile phones, computers, construction equipment etc. However, these materials are produced from non-renewable materials and are resistant to microbial degradation in the environment. Considerable research has therefore been carried out into the production of sustainable, biodegradable polymers, amenable to microbial catabolism to CO2 and H2O. A key group of microbial polyesters, widely considered as optimal replacement polymers, are the Polyhydroxyalkaonates (PHAs). Primary research in this area has focused on using recombinant pure cultures to optimise PHA yields, however, despite considerable success, the high costs of pure culture fermentation have thus far hindered the commercial viability of PHAs thus produced. In more recent years work has begun to focus on mixed cultures for the optimisation of PHA production, with waste incorporations offering optimal production cost reductions. The scale of dairy processing in Ireland, and the high organic load wastewaters generated, represent an excellent potential substrate for bioconversion to PHAs in a mixed culture system. The current study sought to investigate the potential for such bioconversion in a laboratory scale biological system and to establish key operational and microbial characteristics of same. Two sequencing batch reactors were set up and operated along the lines of an enhanced biological phosphate removal (EBPR) system, which has PHA accumulation as a key step within repeated rounds of anaerobic/aerobic cycling. Influents to the reactors varied only in the carbon sources provided. Reactor 1 received artificial wastewater with acetate alone, which is known to be readily converted to PHA in the anaerobic step of EBPR. Reactor 2 wastewater influent contained acetate and skim milk to imitate a dairy processing effluent. Chemical monitoring of nutrient remediation within the reactors as continuously applied and EBPR consistent performances observed. Qualitative analysis of the sludge was carried out using fluorescence microscopy with Nile Blue A lipophillic stain and PHA production was confirmed in both reactors. Quantitative analysis via HPLC detection of crotonic acid derivatives revealed the fluorescence to be short chain length Polyhydroxybutyrate, with biomass dry weight accumulations of 11% and 13% being observed in reactors 1 and 2, respectively. Gas Chromatography-Mass Spectrometry for medium chain length methyl ester derivatives revealed the presence of hydroxyoctanoic, -decanoic and -dodecanoic acids in reactor 1. Similar analyses in reactor 2 revealed monomers of 3-hydroxydodecenoic and 3-hydroxytetradecanoic acids. Investigation of the microbial ecology of both reactors as conducted in an attempt to identify key species potentially contributing to reactor performance. Culture dependent investigations indicated that quite different communities were present in both reactors. Reactor 1 isolates demonstrated the following species distributions Pseudomonas (82%), Delftia acidovorans (3%), Acinetobacter sp. (5%) Aminobacter sp., (3%) Bacillus sp. (3%), Thauera sp., (3%) and Cytophaga sp. (3%). Relative species distributions among reactor 2 profiled isolates were more evenly distributed between Pseudoxanthomonas (32%), Thauera sp (24%), Acinetobacter (24%), Citrobacter sp (8%), Lactococcus lactis (5%), Lysinibacillus (5%) and Elizabethkingia (2%). In both reactors Gammaproteobacteria dominated the cultured isolates. Culture independent 16S rRNA gene analyses revealed differing profiles for both reactors. Reactor 1 clone distribution was as follows; Zooglea resiniphila (83%), Zooglea oryzae (2%), Pedobacter composti (5%), Neissericeae sp. (2%) Rhodobacter sp. (2%), Runella defluvii (3%) and Streptococcus sp. (3%). RFLP based species distribution among the reactor 2 clones was as follows; Runella defluvii (50%), Zoogloea oryzae (20%), Flavobacterium sp. (9%), Simplicispira sp. (6%), Uncultured Sphingobacteria sp. (6%), Arcicella (6%) and Leadbetterella bysophila (3%). Betaproteobacteria dominated the 16S rRNA gene clones identified in both reactors. FISH analysis with Nile Blue dual staining resolved these divergent findings, identifying the Betaproteobacteria as dominant PHA accumulators within the reactor sludges, although species/strain specific allocations could not be made. GC analysis of the sludge had indicated the presence of both medium chain length as well short chain length PHAs accumulating in both reactors. In addition the cultured isolates from the reactors had been identified previously as mcl and scl PHA producers, respectively. Characterisations of the PHA monomer profiles of the individual isolates were therefore performed to screen for potential novel scl-mcl PHAs. Nitrogen limitation driven PHA accumulation in E2 minimal media revealed a greater propensity among isoates for mcl-pHA production. HPLC analysis indicated that PHB production was not a major feature of the reactor isolates and this was supported by the low presence of scl phaC1 genes among PCR screened isolates. A high percentage distribution of phaC2 mcl-PHA synthase genes was recorded, with the majority sharing high percentage homology with class II synthases from Pseudomonas sp. The common presence of a phaC2 homologue was not reflected in the production of a common polymer. Considerable variation was noted in both the monomer composition and ratios following GC analysis. While co-polymer production could not be demonstrated, potentially novel synthase substrate specificities were noted which could be exploited further in the future.
Resumo:
Leachate may be defined as any liquid percolating through deposited waste and emitted from or contained within a landfill. If leachate migrates from a site it may pose a severe threat to the surrounding environment. Increasingly stringent environmental legislation both at European level and national level (Republic of Ireland) regarding the operation of landfill sites, control of associated emissions, as well as requirements for restoration and aftercare management (up to 30 years) has prompted research for this project into the design and development of a low cost, low maintenance, low technology trial system to treat landfill leachate at Kinsale Road Landfill Site, located on the outskirts of Cork city. A trial leachate treatment plant was constructed consisting of 14 separate treatment units (10 open top cylindrical cells [Ø 1.8 m x 2.0 high] and four reed beds [5.0m x 5.0m x 1.0m]) incorporating various alternative natural treatment processes including reed beds (vertical flow [VF] and horizontal flow [HF]), grass treatment planes, compost units, timber chip units, compost-timber chip units, stratified sand filters and willow treatment plots. High treatment efficiencies were achieved in units operating in sequence containing compost and timber chip media, vertical flow reed beds and grass treatment planes. Pollutant load removal rates of 99% for NH4, 84% for BOD5, 46% for COD, 63% for suspended solids, 94% for iron and 98% for manganese were recorded in the final effluent of successfully operated sequences at irrigation rates of 945 l/m2/day in the cylindrical cells and 96 l/m2/day in the VF reed beds and grass treatment planes. Almost total pathogen removal (E. coli) occurred in the final effluent of the same sequence. Denitrification rates of 37% were achieved for a limited period. A draft, up-scaled leachate treatment plant is presented, based on treatment performance of the trial plant.
Resumo:
The growth and proliferation of invasive bacteria in engineered systems is an ongoing problem. While there are a variety of physical and chemical processes to remove and inactivate bacterial pathogens, there are many situations in which these tools are no longer effective or appropriate for the treatment of a microbial target. For example, certain strains of bacteria are becoming resistant to commonly used disinfectants, such as chlorine and UV. Additionally, the overuse of antibiotics has contributed to the spread of antibiotic resistance, and there is concern that wastewater treatment processes are contributing to the spread of antibiotic resistant bacteria.
Due to the continually evolving nature of bacteria, it is difficult to develop methods for universal bacterial control in a wide range of engineered systems, as many of our treatment processes are static in nature. Still, invasive bacteria are present in many natural and engineered systems, where the application of broad acting disinfectants is impractical, because their use may inhibit the original desired bioprocesses. Therefore, to better control the growth of treatment resistant bacteria and to address limitations with the current disinfection processes, novel tools that are both specific and adaptable need to be developed and characterized.
In this dissertation, two possible biological disinfection processes were investigated for use in controlling invasive bacteria in engineered systems. First, antisense gene silencing, which is the specific use of oligonucleotides to silence gene expression, was investigated. This work was followed by the investigation of bacteriophages (phages), which are viruses that are specific to bacteria, in engineered systems.
For the antisense gene silencing work, a computational approach was used to quantify the number of off-targets and to determine the effects of off-targets in prokaryotic organisms. For the organisms of
Regarding the work with phages, the disinfection rates of bacteria in the presence of phages was determined. The disinfection rates of
In addition to determining disinfection rates, the long-term bacterial growth inhibition potential was determined for a variety of phages with both Gram-negative and Gram-positive bacteria. It was determined, that on average, phages can be used to inhibit bacterial growth for up to 24 h, and that this effect was concentration dependent for various phages at specific time points. Additionally, it was found that a phage cocktail was no more effective at inhibiting bacterial growth over the long-term than the best performing phage in isolation.
Finally, for an industrial application, the use of phages to inhibit invasive
In conclusion, this dissertation improved the current methods for designing antisense gene silencing targets for prokaryotic organisms, and characterized phages from an engineering perspective. First, the current design strategy for antisense targets in prokaryotic organisms was improved through the development of an algorithm that minimized the number of off-targets. For the phage work, a framework was developed to predict the disinfection rates in terms of the initial phage and bacterial concentrations. In addition, the long-term bacterial growth inhibition potential of multiple phages was determined for several bacteria. In regard to the phage application, phages were shown to protect both final product yields and yeast concentrations during fermentation. Taken together, this work suggests that the rational design of phage treatment is possible and further work is needed to expand on this foundation.
Resumo:
Experimental data of the adsorption of reactive dyestuffs onto Filtrasorb 400 activated carbon (FS400) were determined in an equilibrium isotherm study. As most industrial wastewater contains more than one pollutant, an investigation into the effect of multisolute systems (using the unhydrolysed form of the reactive dyes) on the adsorption capacity was undertaken. Equilibrium isotherm models were employed to describe the adsorption capacities of single, binary and ternary dye solutions. The results of these analyses showed that adsorption of reactive dyes from single and multisolute systems can be successfully described by Langmuir, and Redlich–Peterson equilibrium isotherm models. Experimental data indicated that competitive adsorption for active sites on the carbon surface results in a reduction in the overall uptake capacity of the reactive dyes investigated.
Resumo:
This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.
Resumo:
The purification capacity of a laboratory scale tidal flow reed bed system with final effluent recirculation at a ratio of 1:1 was investigated in this study. In particular, this four-stage reed bed system was highly loaded with strong agricultural wastewater. Under the hydraulic and organic loading rates as high as 0.43 m3/m2d and 1055 gCOD/m2d, respectively, the average removal efficiencies of COD, BOD5, SS, NH4-N and P were 77%, 78%, 66%, 62% and 38%. Even with the high loading rates, approximately 30% of NH4-N was converted into NO2-N and NO3-N from the mid-stage of the system where nitrification took place. The results suggest that the multi-stage reed bed system could be employed to treat strong wastewater under high loading, especially for the substantive mass removal of solids, organic matter and ammoniacal-nitrogen. Tidal flow combined with effluent recirculation is a favourable operation strategy to achieve this objective.
Resumo:
Hazardous shipyard wastewater is a worldwide problem, arising from ship repair. In this study an experimental programme was undertaken to establish the suitability of dolomite and dolomitic sorbent materials to remove contaminants from wastewater arising from a commercial shipyard. Experimental data indicate that dolomite and dolomitic sorbents have the ability to significantly reduce the COD concentration of the shipyard effluent (98% reduction). The data gained from trials at a shipyard indicated that the dolomite treatment process could be undertaken in a 8000 L pilot scale reaction vessel. Analysis of the wastewater using ICP-MS during the pilot trial indicated that the dolomite significantly reduced the concentrations of metallic impurities. The concentration of Sn ions, which is indicative of organo-tin complexes commonly found in shipyard wastewater, was reduced by 80% from its initial concentration in the pilot trial. The mechanism for the removal process using dolomite has been ascribed to a metal complexation/sorption process.