985 resultados para Wacker-type reactions
Resumo:
Respiratory type-IV hypersensitivity reactions due to corticosteroids is a rare phenomenon. We describe two such cases. The first is a 37- year-old atopic woman who developed labial angioedema and nasal itching after the use of budesonide nasal spray. A month later, after the first puffs of a formoterol/budesonide spray prescribed for asthma, she noticed symptoms of tongue and oropharyngeal itching and redness with subsequent dysphagia, labial and tongue angioedema, and facial oedema. The second is a 15-year-old non-atopic woman who reported pruritic eruptions around the nostrils after using a budesonide nasal spray. A year later she presented with nasal pruritus with intense congestion and labial and facial oedema after using the same spray. Both patients were evaluated with patch-tests using the commercial T.R.U.E. test, a budesonide solution, and corticosteroid creams. Test evaluation was performed at 48 and 96 hours. In both patients, patch tests were positive to budesonide (++) on the second day. The first patient also had a positive (+) reaction to tixocortol-21-pivalate. All the other patch tests were negative. Clinicians should be aware that hypersensitivity reactions may occur during the use of nasal or inhaled corticosteroids.
Resumo:
Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).
Resumo:
OBJECTIVE: To evaluate the colonoscopic allergen provocation (COLAP) test as a new tool for the diagnosis of IgE-mediated food allergy. METHODS: Oral food challenges as well as COLAP testing were performed in a colony of nine research dogs with proven immediate-type food allergic reactions. In addition, COLAP was performed in five healthy dogs. RESULTS: When compared with the oral challenge test, COLAP accurately determined 18 of 23 (73 per cent) positive oral challenge reactions (73 per cent) in dogs with food allergies and was negative in the healthy dogs. CLINICAL SIGNIFICANCE: The accuracy of this new test may be higher than that for gastric sensitivity testing. Therefore, COLAP holds promise as a new test to confirm the diagnosis of suspect IgE-mediated food allergy in dogs.
Resumo:
BACKGROUND: Drug-reactive T cells are involved in most drug-induced hypersensitivity reactions. The frequency of such cells in peripheral blood of patients with drug allergy after remission is unclear. OBJECTIVE: We determined the frequency of drug-reactive T cells in the peripheral blood of patients 4 months to 12 years after severe delayed-type drug hypersensitivity reactions, and whether the frequency of these cell differs from the frequency of tetanus toxoid-reactive T cells. METHODS: We analyzed 5 patients with delayed-type drug hypersensitivity reactions, applying 2 methods: quantification of cytokine-secreting T cells by enzyme-linked immunospot (ELISpot), and fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity distribution analysis of drug-reactive T cells. RESULTS: Frequencies found were between 0.02% and 0.4% of CD4(+) T cells reacting to the respective drugs measured by CFSE analysis, and between 0.01% and 0.08% of T cells as determined by ELISpot. Reactivity was seen neither to drugs to which the patients were not sensitized nor in healthy individuals after stimulation with any of the drugs used. CONCLUSION: About 1:250 to 1:10,000 of T cells of patients with drug allergy are reactive to the relevant drugs. This frequency of drug-reactive T cells is higher than the frequency of T cells able to recognize recall antigens like tetanus toxoid in the same subjects. A substantial frequency could be observed as long as 12 years later in 1 patient even after strict drug avoidance. Patients with severe delayed drug hypersensitivity reactions are therefore potentially prone to react again to the incriminated drug even years after strict drug avoidance.
Resumo:
BACKGROUND: T cells play a key role in delayed-type drug hypersensitivity reactions. Their reactivity can be assessed by their proliferation in response to the drug in the lymphocyte transformation test (LTT). However, the LTT imposes limitations in terms of practicability, and an alternative method that is easier to implement than the LTT would be desirable. METHODS: Four months to 12 years after acute drug hypersensitivity reactions, CD69 upregulation on T cells of 15 patients and five healthy controls was analyzed by flow cytometry. RESULTS: All 15 LTT-positive patients showed a significant increase of CD69 expression on T cells after 48 h of drug-stimulation exclusively with the drugs incriminated in drug-hypersensitivities. A stimulation index of 2 as cut-off value allowed discrimination between nonreactive and reactive T cells in LTT and CD69 upregulation. T cells (0.5-3%) showed CD69 up-regulation. The reactive cell population consisted of a minority of truly drug reactive T cells secreting cytokines and a higher number of bystander T cells activated by IL-2 and possibly other cytokines. CONCLUSIONS: CD69 upregulation was observed after 2 days in all patients with a positive LTT after 6 days, thus appearing to be a promising tool to identify drug-reactive T cells in the peripheral blood of patients with drug-hypersensitivity reactions.
Resumo:
Diagnosis of drug allergy involves first the recognition of sometimes unusual symptoms as drug allergy and, second, the identification of the eliciting drug. This is an often difficult task, as the clinical picture and underlying pathomechanisms are heterogeneous. In clinical routine, physicians frequently have to rely upon a suggestive history and eventual provocation tests, both having their specific limitations. For this reason both in vivo (skin tests) and in vitro tests are investigated intensively as tools to identify the disease-eliciting drug. One of the tests evaluated in drug allergy is the basophil activation test (BAT). Basophils with their high-affinity IgE receptors are easily accessible and therefore can be used as indicator cells for IgE-mediated reactions. Upon allergen challenge and cross-linking of membrane-bound IgE antibodies (via Fc-epsilon-RI) basophils up-regulate certain activation markers on their surface such as CD63 and CD203c, as well as intracellular markers (eg, phosphorylated p38MAPK). In BAT, these alterations can be detected rapidly on a single-cell basis by multicolor flow cytometry using specific monoclonal antibodies. Combining this technique with in vitro passive sensitization of donor basophils with patients' serum, one can prove the IgE dependence of a drug reaction. This article summarizes the authors' current experience with the BAT in the diagnostic management of immediate-type drug allergy mediated by drug-specific IgE antibodies.
Resumo:
BACKGROUND: The most prevalent drug hypersensitivity reactions are T-cell mediated. The only established in vitro test for detecting T-cell sensitization to drugs is the lymphocyte transformation test, which is of limited practicability. To find an alternative in vitro method to detect drug-sensitized T cells, we screened the in vitro secretion of 17 cytokines/chemokines by peripheral blood mononuclear cells (PBMC) of patients with well-documented drug allergies, in order to identify the most promising cytokines/chemokines for detection of T-cell sensitization to drugs. METHODS: Peripheral blood mononuclear cell of 10 patients, five allergic to beta-lactams and five to sulfanilamides, and of five healthy controls were incubated for 3 days with the drug antigen. Cytokine concentrations were measured in the supernatants using commercially available 17-plex bead-based immunoassay kits. RESULTS: Among the 17 cytokines/chemokines analysed, interleukin-2 (IL-2), IL-5, IL-13 and interferon-gamma (IFN-gamma) secretion in response to the drugs were significantly increased in patients when compared with healthy controls. No difference in cytokine secretion patterns between sulfonamide- and beta-lactam-reactive PBMC could be observed. The secretion of other cytokines/chemokines showed a high variability among patients. CONCLUSION: The measurement of IL-2, IL-5, IL-13 or IFN-gamma or a combination thereof might be a useful in vitro tool for detection of T-cell sensitization to drugs. Secretion of these cytokines seems independent of the type of drug antigen and the phenotype of the drug reaction. A study including a higher number of patients and controls will be needed to determine the exact sensitivity and specificity of this test.
Resumo:
Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.
Resumo:
The Agrobacterium tumefaciens VirB/D4 type IV secretion system (T4SS) delivers oncogenic T-DNA and effector proteins to susceptible plant cells. This leads to the formation of tumors termed Crown Galls. The VirB/D4 T4SS is comprised of 12 subunits (VirB1 to VirB11 and VirD4), which assemble to form two structures, a secretion channel spanning the cell envelope and a T-pilus extending from the cell surface. In A. tumefaciens, the VirB2 pilin subunit is required for assembly of the secretion channel and is the main subunit of the T-pilus. The focus of this thesis is to define key reactions associated with the T4SS biogenesis pathway involving the VirB2 pilin. Topology studies demonstrated that VirB2 integrates into the inner membrane with two transmembrane regions, a small cytoplasmic loop, and a long periplasmic loop comprised of covalently linked N and C termini. VirB2 was shown by the substituted cysteine accessibility method (SCAM) to adopt distinct structural states when integrated into the inner membrane and when assembled as a component of the secretion channel and the T-pilus. The VirB4 and VirB11 ATPases were shown by SCAM to modulate the structural state of membrane-integrated VirB2 pilin, and evidence was also obtained that VirB4 mediates extraction of pilin from the membrane. A model that VirB4 functions as a pilin dislocase by an energy-dependent mechanism was further supported by coimmunoprecipitation and osmotic shock studies. Mutational studies identified two regions of VirB10, an N-terminal transmembrane domain and an outer membrane-associated domain termed the antennae projection, that contribute selectively to T-pilus biogenesis. Lastly, characterization of a VirB10 mutant that confers a ‘leaky’ channel phenotype further highlighted the role of VirB10 in gating substrate translocation across the outer membrane as well as T-pilus biogenesis. Results of my studies support a working model in which the VirB4 ATPase catalyzes dislocation of membrane-integrated pilin, and distinct domains of VirB10 coordinate pilin incorporation into the secretion channel and the extracellular T-pilus.
Resumo:
Agrobacterium tumefaciens translocates T-DNA through a polar VirB/D4 type IV secretion (T4S) system. VirC1, a factor required for efficient T-DNA transfer, bears a deviant Walker A and other sequence motifs characteristic of ParA and MinD ATPases. Here, we show that VirC1 promotes conjugative T-DNA transfer by stimulating generation of multiple copies per cell of the T-DNA substrate (T-complex) through pairwise interactions with the processing factors VirD2 relaxase, VirC2, and VirD1. VirC1 also associates with the polar membrane and recruits T-complexes to cell poles, the site of VirB/D4 T4S machine assembly. VirC1 Walker A mutations abrogate T-complex generation and polar recruitment, whereas the native protein recruits T-complexes to cell poles independently of other polar processing factors (VirC2, VirD1) or T4S components (VirD4 substrate receptor, VirB channel subunits). We propose that A. tumefaciens has appropriated a progenitor ParA/MinD-like ATPase to promote conjugative DNA transfer by: (i) nucleating relaxosome assembly at oriT-like T-DNA border sequences and (ii) spatially positioning the transfer intermediate at the cell pole to coordinate substrate-T4S channel docking.
Resumo:
Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
Tree-ring series were collected for radiocarbon analyses from the vicinity of Paks nuclear power plant (NPP) and a background area (Dunaföldvár) for a 10-yr period (2000–2009). Samples of holocellulose were prepared from the wood and converted to graphite for accelerator mass spectrometry (AMS) 14C measurement using the MICADAS at ETH Zürich. The 14C concentration data from these tree rings was compared to the background tree rings for each year. The global decreasing trend of atmospheric 14C activity concentration was observed in the annual tree rings both in the background area and in the area of the NPP. As an average of the past 10 yr, the excess 14C emitted by the pressurized-water reactor (PWR) NPP to the atmosphere shows only a slight systematic excess (~6‰) 14C in the annual rings. The highest 14C excess was 13‰ (in 2006); however, years with the same 14C level as the background were quite frequent in the tree-ring series.
Resumo:
In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.
Resumo:
BACKGROUND The purpose of patient information leaflets (PILs) is to inform patients about the administration, precautions and potential side effects of their prescribed medication. Despite European Commission guidelines aiming at increasing readability and comprehension of PILs little is known about the potential risk information has on patients. This article explores patients' reactions and subsequent behavior towards risk information conveyed in PILs of commonly prescribed drugs by general practitioners (GPs) for the treatment of Type 2 diabetes, hypertension or hypercholesterolemia; the most frequent cause for consultations in family practices in Germany. METHODS We conducted six focus groups comprising 35 patients which were recruited in GP practices. Transcripts were read and coded for themes; categories were created by abstracting data and further refined into a coding framework. RESULTS Three interrelated categories are presented: (i) The vast amount of side effects and drug interactions commonly described in PILs provoke various emotional reactions in patients which (ii) lead to specific patient behavior of which (iii) consulting the GP for assistance is among the most common. Findings show that current description of potential risk information caused feelings of fear and anxiety in the reader resulting in undesirable behavioral reactions. CONCLUSIONS Future PILs need to convey potential risk information in a language that is less frightening while retaining the information content required to make informed decisions about the prescribed medication. Thus, during the production process greater emphasis needs to be placed on testing the degree of emotional arousal provoked in patients when reading risk information to allow them to undertake a benefit-risk-assessment of their medication that is based on rational rather than emotional (fearful) reactions.