925 resultados para WPM culture medium


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lignin is a hydrophobic polymer that is synthesised in the secondary cell walls of all vascular plants. It enables water conduction through the stem, supports the upright growth habit and protects against invading pathogens. In addition, lignin hinders the utilisation of the cellulosic cell walls of plants in pulp and paper industry and as forage. Lignin precursors are synthesised in the cytoplasm through the phenylpropanoid pathway, transported into the cell wall and oxidised by peroxidases or laccases to phenoxy radicals that couple to form the lignin polymer. This study was conducted to characterise the lignin biosynthetic pathway in Norway spruce (Picea abies (L.) Karst.). We focused on the less well-known polymerisation stage, to identify the enzymes and the regulatory mechanisms that are involved. Available data for lignin biosynthesis in gymnosperms is scarce and, for example, the latest improvements in precursor biosynthesis have only been verified in herbaceous plants. Therefore, we also wanted to study in detail the roles of individual gene family members during developmental and stress-induced lignification, using EST sequencing and real-time RT-PCR. We used, as a model, a Norway spruce tissue culture line that produces extracellular lignin into the culture medium, and showed that lignin polymerisation in the tissue culture depends on peroxidase activity. We identified in the culture medium a significant NADH oxidase activity that could generate H2O2 for peroxidases. Two basic culture medium peroxidases were shown to have high affinity to coniferyl alcohol. Conservation of the putative substrate-binding amino acids was observed when the spruce peroxidase sequences were compared with other peroxidases with high affinity to coniferyl alcohol. We also used different peroxidase fractions to produce synthetic in vitro lignins from coniferyl alcohol; however, the linkage pattern of the suspension culture lignin could not be reproduced in vitro with the purified peroxidases, nor with the full complement of culture medium proteins. This emphasised the importance of the precursor radical concentration in the reaction zone, which is controlled by the cells through the secretion of both the lignin precursors and the oxidative enzymes to the apoplast. In addition, we identified basic peroxidases that were reversibly bound to the lignin precipitate. They could be involved, for example, in the oxidation of polymeric lignin, which is required for polymer growth. The dibenzodioxocin substructure was used as a marker for polymer oxidation in the in vitro polymerisation studies, as it is a typical substructure in wood lignin and in the suspension culture lignin. Using immunolocalisation, we found the structure mainly in the S2+S3 layers of the secondary cell walls of Norway spruce tracheids. The structure was primarily formed during the late phases of lignification. Contrary to the earlier assumptions, it appears to be a terminal structure in the lignin macromolecule. Most lignin biosynthetic enzymes are encoded for by several genes, all of which may not participate in lignin biosynthesis. In order to identify the gene family members that are responsible for developmental lignification, ESTs were sequenced from the lignin-forming tissue culture and developing xylem of spruce. Expression of the identified lignin biosynthetic genes was studied using real-time RT-PCR. Candidate genes for developmental lignification were identified by a coordinated, high expression of certain genes within the gene families in all lignin-forming tissues. However, such coordinated expression was not found for peroxidase genes. We also studied stress-induced lignification either during compression wood formation by bending the stems or after Heterobasidion annosum infection. Based on gene expression profiles, stress-induced monolignol biosynthesis appeared similar to the developmental process, and only single PAL and C3H genes were specifically up-regulated by stress. On the contrary, the up-regulated peroxidase genes differed between developmental and stress-induced lignification, indicating specific responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The inßuence of the sperm motility stimulant pentoxifylline (PF) on preimplantation embryo development in hamsters was evaluated. Eight-cell embryos were cultured in hamster embryo culture medium (HECM)-2, with or without PF (0· 0233·6 mM). There was 90%, 37% and 29% inhibition of blastocyst development by 3·6 (used for human sperm), 0·9 and 0 ·45 mM PF, respectively. However, 23 µM PF (exposed to hamster oocytes during IVF) signicantly (P < 0·05) improved blastocyst development (63· 6% v. 51· 8%); morulae development was, however, not curtailed by 0·45 mM or 0·9 mM PF (51·8%±6·0 or 50·5%±11·3, respectively). Post-implantation viability of PF-treated embryos was assessed by embryo transfer; 43% of 80 PF-treated embryos implanted compared with 40% of 79 control embryos. Of the 9 recipients, 6 females delivered pups (19, i.e. 16% of transferred embryos or 53% of implanted embryos). These data show that in hamsters, continuous presence of PF at 0·45-3·6 mM is detrimental to 8-cell embryo development whereas 23 µM PF improves the development of embryos to viable blastocysts which produce live offspring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sjögren s syndrome (SS) is a common autoimmune disease affecting the lacrimal and salivary glands. SS is characterized by a considerable female predominance and a late age of onset, commonly at the time of adreno- and menopause. The levels of the androgen prohormone dehydroepiandrosterone-sulphate (DHEA-S) in the serum are lower in patients with SS than in age- and sex-matched healthy control subjects. The eventual systemic effects of low androgen levels in SS are not currently well understood. Basement membranes (BM) are specialized layers of extracellular matrix and are composed of laminin (LM) and type IV collagen matrix networks. BMs deliver messages to epithelial cells via cellular LM-receptors including integrins (Int) and Lutheran blood group antigen (Lu). The composition of BMs and distribution of LM-receptors in labial salivary glands (LSGs) of normal healthy controls and patients with SS was assessed. LMs have complex and highly regulated distribution in LSGs. LMs seem to have specific tasks in the dynamic regulation of acinar cell function. LM-111 is important for the normal acinar cell differentiation and its expression is diminished in SS. Also LM-211 and -411 seem to have some acinar specific functional tasks in LSGs. LM-311, -332 and -511 seem to have more general structure maintaining and supporting roles in LSGs and are relatively intact also in SS. Ints α3β1, α6β1, α6β4 and Lu seem to supply structural basis for the firm attachment of epithelial cells to the BM in LSGs. The expression of Ints α1β1 and α2β1 differed clearly from other LM-receptors in that they were found almost exclusively around the acini and intercalated duct cells in salivons suggesting some type of acinar cell compartment-specific or dominant function. Expression of these integrins was lower in SS compared to healthy controls suggesting that the LM-111 and -211-to-Int α1β1 and α2β1 interactions are defective in SS and are crucial to the maintenance of the acini in LSGs. DHEA/DHEA-S concentration in serum and locally in saliva of patients with SS seems to have effects on the salivary glands. These effects were first detected using the androgen-dependent CRISP-3 protein, the production and secretion of which were clearly diminished in SS. This might be due to the impaired function of the intracrine DHEA prohormone metabolizing machinery, which fails to successfully convert DHEA into its active metabolites in LSGs. The progenitor epithelial cells from the intercalated ductal area of LSGs migrate to the acinar compartment and then undergo a phenotype change into secretory acinar cells. This migration and phenotype change seem to be regulated by the LM-111-to-Int α1β1/Int α2β1 interactions. Lack of these interactions could be one factor limiting the normal remodelling process. Androgens are effective stimulators of Int α1β1 and α2β1 expression in physiologic concentrations. Addition of DHEA to the culture medium had effective stimulating effect on the Int α1β1 and α2β1 expression and its effect may be deficient in the LSGs of patients with SS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of the nutritional requirements of Arthrobacter strain C19d which accumulates alanine in large amounts in the culture medium. 1evealed that the organism needs thiamine for its growth. A Iso the alanine accumulation by this strain was found to be related to thiamine concentration in the medium. The optimum concentration of thiamine for alanine accumulation (20 tJ.g/mJ) Was also optimum for the growth of the organism indicating thereby that alanine accumulation by this strain is a growth associated process rather than far removed from it. Among the various growth promoters tried yeast extract was found to be superior from the point of view of alanine yield and it wa5 also superior to giving thiamine alone in the medium. A concentration of 0.02% yeast extract was found to be optimum for alanine occumulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antigen specific monoclonal antibodies present in crude hybridoma supernatants are normally screened by ELISA on plates coated with the relevant antigen. Screening for inhibitory monoclonals to enzymes would require the evaluation of purified antibodies or antibody containing supernatants for their inhibition of enzyme activity in a separate assay. However, screening for inhibitory antibodies against DNA transacting enzymes such as topoisomerase I (topo I) cannot be done using hybridoma supernatants due to the presence of nucleases in tissue culture media containing foetal calf serum which degrade the DNA substrates upon addition. We have developed a simple and rapid screening procedure for the identification of clones that secrete inhibitory antibodies against mycobacterial topo I using 96 well ELISA microtiter plates. The principle of the method is the selective capture of monoclonal antibodies from crude hybridoma supernatants by topo I that is tethered to the plate through the use of plate-bound polyclonal anti-topo I antibodies. This step allows the nucleases present in the medium to be washed off leaving the inhibitor bound to the tethered enzyme. The inhibitory activity of the captured antibody is assessed by performing an in situ DNA relaxation assay by the addition of supercoiled DNA substrate directly to the microtiter well followed by the analysis of the reaction products by agarose gel electrophoresis. The validity of this method was confirmed by purification of the identified inhibitory antibody and its evaluation in a DNA relaxation assay. Elimination of all enzyme-inhibitory constituents of the culture medium from the well in which the inhibitory antibody is bound to the tethered enzyme may make this method broadly applicable to enzymes such as DNA gyrases, restriction enzymes and other DNA transaction enzymes. Further, the method is simple and avoids the need of prior antibody purification for testing its inhibitory activity. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. Methodology/Principal Findings: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), beta-galactosidase (beta-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational upregulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. Conclusions/Significance: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

n a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A cationic amphiphile, cholest-5en-3 beta-oxyethyl pyridinium bromide (PY(+)-Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+)-Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GRPY(+)-Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmCGRPY(+)-Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+)-Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC ribbons in the composite suspensions. Atomic force microscopy indicates the presence of extended structures of GRPY(+)-Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmCGRPY(+)-Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmCGRPY(+)-Chol in delivering the drug to the cells, compared to the suspensions devoid of GR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 k Omega at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the present work is to understand the vertical electric field stimulation of the bacterial cells, when grown on amorphous carbon substrates in vitro. In particular, the antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are studied using MTTassay, live/dead assay and inner membrane permeabilization assays. In our experiments, the carbon substrate acts as one electrode and the counter electrode is positioned outside the culture medium, thus suppressing the current, electrokinetic motions and chemical reactions. Guided by similar experiments conducted in our group on neuroblastoma cells, the present experimental results further establish the interdependence of field strength and exposure duration towards bacterial growth inactivation in vitro. Importantly, significant reduction in bacterial viability was recorded at the 2.5 V/cm electric field stimulation conditions, which does not reduce the neural cell viability to any significant extent on an identical substrate. Following electrical stimulation, the bacterial growth is significantly inhibited for S. aureus bacterial strain in an exposure time dependent manner. In summary, our experiments establish the effectiveness of the vertical electric field towards bacterial growth inactivation on amorphous carbon substrates, which is a cell type dependent phenomenon (Gram-positive vs. Gram-negative). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, we present six new lipopolymers based on low molecular weight, branched polyethylenimine (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and the redox state of ferrocene in the lipopolymers on the self assembly properties were investigated in detail by TEM, AFM, DLS and zeta potential measurements. The assemblies displayed an oxidation induced increase in the size of the aggregates. The co-liposomes comprising the lipopolymer and a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), showed excellent gene (pDNA) delivery capability in a serum containing environment in two cancer cell lines (HeLa and U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI (25 kDa) and were also significantly better than a commercial transfection reagent, Lipofectamine 2000 as evidenced from both the luciferase activity and GFP expression analysis. Oxidation of ferrocene in the lipopolymers led to drastically reduced levels of gene transfection which was substantiated by reduced cellular internalization of fluorescently labelled pDNA as detected using confocal microscopy and flow cytometry. Moreover, the transfection inactive oxidized lipopolyplexes could be turned transfection active by exposure to ascorbic acid (AA) in cell culture medium during transfection. Endocytosis inhibition experiments showed that gene expression mediated by reduced formulations involved both clathrin and caveolae mediated pathways while the oxidized formulations were routed via the caveolae. Cytotoxicity assays revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels in both the cell lines studied. Overall, we have exploited the redox activity of ferrocene in branched PEI-based efficient polymeric gene carriers whose differential transfection activities could be harnessed for spatial or temporal cellular transfections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18 alpha-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE(2) or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18 alpha-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network.