992 resultados para WESTERN NORTH-ATLANTIC
Resumo:
The southwestern part of the subpolar North Atlantic east of the Grand Banks of Newfoundland and Flemish Cap is a crucial area for the Atlantic Meridional Overturning Circulation. Here the exchange between subpolar and subtropical gyre takes place, southward flowing cold and fresh water is replaced by northward flowing warm and salty water within the North Atlantic Current (NAC). As part of a long-term experiment, the circulation east of Flemish Cap has been studied by seven repeat hydrographic sections along inline image (2003-2011), a 2 year time series of current velocities at the continental slope (2009-2011), 19 years of sea surface height, and 47 years of output from an eddy resolving ocean circulation model. The structure of the flow field in the measurements and the model shows a deep reaching NAC with adjacent recirculation and two distinct cores of southward flow in the Deep Western Boundary Current (DWBC): one core above the continental slope with maximum velocities at mid-depth and the second farther east with bottom-intensified velocities. The western core of the DWBC is rather stable, while the offshore core shows high temporal variability that in the model is correlated with the NAC strength. About 30 Sv of deep water flow southward below a density of sigma-theta = 27.68 kg/m**3 in the DWBC. The NAC transports about 110 Sv northward, approximately 15 Sv originating from the DWBC, and 75 Sv recirculating locally east of the NAC, leaving 20 Sv to be supplied by the NAC from the south.
Resumo:
Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ~11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), d18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no d18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ~4 km water depth.
Resumo:
In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.
Resumo:
We explored the potential to use the stable isotopic compositions of planktonic foraminifera as a proxy for the position of the Brazil-Malvinas Confluence (BMC) in the Argentine Basin. For this purpose, we measured the oxygen and carbon isotopic compositions of Globigerinoides ruber (pink and white varieties measured separately), Globigerinoides trilobus, Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides (left- and right-coiling forms measured separately) from a latitudinal transect of 56 surface sediment samples from the continental slope off Brazil, Uruguay and Argentina between 20 and 48°S. Lowest oxygen isotopes values were found in G. ruber (pink), followed by G. ruber (white) and G. trilobus reflecting the highly stratified near surface water conditions north of the BMC. Globigerina bulloides was present mainly south of the BMC and records subsurface conditions supporting earlier plankton tow studies. Globorotalia inflata and G. truncatulinoides (left and right) were both available over the whole transect and calcify in the depth level with the steepest temperature change across the BMC. Accordingly, the delta18O of these species depict a sharp gradient of 2? at the confluence with remarkably stable values north and south of the BMC. Our data show that the oxygen isotopic composition of G. inflata and G. truncatulinoides (left and right) are the most reliable indicators for the present position of the BMC and can therefore be used to define the past migration of the front if appropriate cores are available.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (~15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ~15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ?90-100 ka, followed by another period of anoxic, non-sulfidic conditions lasting for ~15-20 ka. The observed cyclicity at the lower end of the redox scale may have been triggered by repeated incursions of more oxygenated surface- to mid-waters from the South Atlantic resulting in a lowering of the oxic-anoxic chemocline in the water column. Alternatively, sea water sulfate might have been stripped by long-lasting high rates of sulfate reduction, removing the ultimate source for HS**- production.
Resumo:
Two stocks of bluefin tuna (Thunnus thynnus) inhabit the north Atlantic; the western and eastern stocks spawn in the Gulf of Mexico and the Mediterranean Sea respectively. Trans-Atlantic movements occur outside spawning time whereas natal homing maintains stock structure. Commercial fisheries may exploit a mixed assemblage of both stocks. The incorporation of mixing rates into stock assessment is precluded by uncertainties surrounding stock discrimination. Otolith shape descriptors were used to characterise western and eastern stocks of Atlantic bluefin tuna in the present study and to estimate stock composition in catches of unknown origin. Otolith shape varied with length and between locations and years. Within a restricted size range (200-297-cm fork length (FL)) the two stocks were distinguished with an accuracy of 83%. Bayesian stock mixture analysis indicated that samples from the east Atlantic and Mediterranean were predominantly of eastern origin. The proportion assigned to the eastern stock showed slight spatial variation; however, overlapping 95% credible intervals indicated no significant difference (200-297 cm FL: central Atlantic, 73-100%; Straits of Gibraltar, 73-100%; Morocco, 50-99%; Portugal 64-100%). Otolith shape could be used in combination with other population markers to improve the accuracy of mixing rate estimates for Atlantic bluefin tuna.
Resumo:
This paper analyses the influence of different atmospheric circulation indices on the multi-scalar drought variability across Europe by using the Standardized Precipitation Evapotranspiration Index (SPEI). The monthly circulation indices used in this study include the North Atlantic oscillation (NAO), the East Atlantic (EA), the Scandinavian (SCAN) and the East Atlantic-Western Russia (EA-WR) patterns, as well as the recently published Westerly Index (WI), defined as the persistence of westerly winds over the eastern north Atlantic region. The results indicate that European drought variability is better explained by the station-based NAO index and the WI than by any other combination of circulation indices. In northern and central Europe the variability of drought severity for different seasons and time-scales is strongly associated with the WI. On the contrary, the influence of the NAO on southern Europe droughts is stronger than that exerted by the WI. The correlation patterns of the NAO and WI with the SPEI show a spatial complementarity in shaping drought variability across Europe. Lagged correlations of the NAO and WI with the SPEI also indicate enough skill of both indices to anticipate drought severity several months in advance. As long as instrumental series of the NAO and WI are available, their combined use would allow inferring European drought variability for the last two centuries and improve the calibration and interpretation of paleoclimatic proxies associated with drought.
Resumo:
Organic carbon-rich shales deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 were drilled during ODP Leg 207 at Demerara Rise. We present integrated high-resolution geochemical records of core intervals from ODP Sites 1259 and 1261 both from nannofossil biozone CC14. Our results reveal systematic variations in marine and detrital sediment contribution, depositional processes, and bottom water redox conditions during black shale formation at two locations on Demerara Rise in different paleo-water depths. A combination of redox proxies (Fe/S, P/Al, C/P, redox-sensitive/sulfide-forming trace metals Mn, Cd, Mo, Ni, V, Zn) and other analytical approaches (bulk sediment composition, P speciation, electron microscopy, X-ray diffraction) evidence anoxic to sulfidic bottom water and sediment conditions throughout the deposition of black shale. These extreme redox conditions persisted and were periodically punctuated by short-termed periods with less reducing bottom waters irrespective of paleo-water depth. Sediment supply at both sites was generally dominated by marine material (carbonate, organic matter, opal) although relationships of detrital proxies as well as glauconitic horizons support some influence of turbidites, winnowing bottom currents and/or variable detritus sources, along with less reducing bottom water at the proposed shallower location (ODP Site 1259). At Site 1261, located at greater paleo-depth, redox fluctuations were more regular, and steady hemipelagic sedimentation sustained the development of mostly undisturbed lamination in the sedimentary record. Strong similarities of the studied deposits exist with the stratigraphic older Cenomanian-Turonian OAE2 black shale sections at Demerara Rise, suggesting that the primary mechanisms controlling continental supply and ocean redox state were time-invariant and kept the western equatorial Atlantic margin widely anoxic over millions of years.
Resumo:
High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 g/m3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS/yr, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models.