970 resultados para WATER NITROBENZENE INTERFACE
Resumo:
Water infiltration in the soil is an important hydrological process that occurs at the interface of the soil-atmosphere system; thus, the soil management practice used has a strong influence on this process. The aim of this study was to evaluate water infiltration in the soil and compare equations for estimating the water infiltration rate in an Ultisol after harvesting common bean (Phaseolus vulgaris L.) under simulated rainfall. Field tests with a rainfall simulator were carried out in three soil management systems: minimum tillage (MT), conventional tillage (CT), and no tillage (NT). In NT, four levels of plant residue on the soil surface were evaluated: 0, 3, 6, and 9 t ha-1. The models of Kostiakov-Lewis, Horton, and Philip were used to estimate the infiltration rate. In the MT system, the final infiltration rate was 54 mm h-1, whereas in the CT and NT systems with up to 3 t ha-1 of plant residue on the soil surface, the rate was near 17 mm h-1. In addition, the results indicated that in the NT system the infiltration rate increased with plant residue coverage greater than 6 t ha-1, i.e., there was a positive correlation between plant cover and the water infiltration rate. The Horton model was the most suitable in representing the water infiltration process in the soil. Therefore, this model can be recommended for estimation of this variable regardless of the soil tillage system used.
Resumo:
ABSTRACT Knowledge of the terms (or processes) of the soil water balance equation or simply the components of the soil water balance over the cycle of an agricultural crop is essential for soil and water management. Thus, the aim of this study was to analyze these components in a Cambissolo Háplico (Haplocambids) growing muskmelon (Cucumis melo L.) under drip irrigation, with covered and uncovered soil, in the municipality of Baraúna, State of Rio Grande do Norte, Brazil (05º 04’ 48” S, 37º 37’ 00” W). Muskmelon, variety AF-646, was cultivated in a flat experimental area (20 × 50 m). The crop was spaced at 2.00 m between rows and 0.35 m between plants, in a total of ten 50-m-long plant rows. At points corresponding to ⅓ and ⅔ of each plant row, four tensiometers (at a distance of 0.1 m from each other) were set up at the depths of 0.1, 0.2, 0.3, and 0.4 m, adjacent to the irrigation line (0.1 m from the plant row), between two selected plants. Five random plant rows were mulched using dry leaves of banana (Musa sp.) along the drip line, forming a 0.5-m-wide strip, which covered an area of 25 m2 per of plant row with covered soil. In the other five rows, there was no covering. Thus, the experiment consisted of two treatments, with 10 replicates, in four phenological stages: initial (7-22 DAS - days after sowing), growing (22-40 DAS), fruiting (40-58 DAS) and maturation (58-70 DAS). Rainfall was measured with a rain gauge and water storage was estimated by the trapezoidal method, based on tensiometer readings and soil water retention curves. For soil water flux densities at 0.3 m, the tensiometers at the depths of 0.2, 0.3, and 0.4 m were considered; the tensiometer at 0.3 m was used to estimate soil water content from the soil water retention curve at this depth, and the other two to calculate the total potential gradient. Flux densities were calculated through use of the Darcy-Buckingham equation, with hydraulic conductivity determined by the instantaneous profile method. Crop actual evapotranspiration was calculated as the unknown of the soil water balance equation. The soil water balance method is effective in estimating the actual evapotranspiration of irrigated muskmelon; there was no significant effect of soil coverage on capillary rise, internal drainage, crop actual evapotranspiration, and muskmelon yield compared with the uncovered soil; the transport of water caused by evaporation in the uncovered soil was controlled by the break in capillarity at the soil-atmosphere interface, which caused similar water dynamics for both management practices applied.
Resumo:
Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.
Resumo:
We study the dynamics of a water-oil meniscus moving from a smaller to a larger pore. The process is characterised by an abrupt change in the configuration, yielding a sudden energy release. A theoretic study for static conditions provides analytical solutions of the surface energy content of the system. Although the configuration after the sudden energy release is energetically more convenient, an energy barrier must be overcome before the process can happen spontaneously. The energy barrier depends on the system geometry and on the flow parameters. The analytical results are compared to numerical simulations that solve the full Navier-Stokes equation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. First, the numerical simulations of a quasi-static process are validated by comparison with the analytical solutions for a static meniscus, then numerical simulations with varying injection velocity are used to investigate dynamic effects on the configuration change. During the sudden energy jump the system exhibits an oscillatory behaviour. Extension to more complex geometries might elucidate the mechanisms leading to a dynamic capillary pressure and to bifurcations in final distributions of fluid phases in porous
Resumo:
We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
This study presents an evaluation of the stable isotopic composition of water (hydrogen and oxygen) and dissolved inorganic carbon (DIC) of Lake Geneva, a deep, peri-alpine lake situated at the border between Switzerland and France. The research goal is to apply vertical and seasonal variations of the isotope compositions to evaluate mixing processes of pollutants, nutrients and oxygen. Depth profiles were sampled at different locations throughout Lake Geneva on a monthly and seasonal basis over the course of three years (2009-2011). The results of the oxygen isotopic composition indicate a Rhône River interflow, which can be traced for about 55 km throughout the lake during summer. The Rhône River interflow is 7 to 15 m thick and the molar fraction of Rhône water is estimated to amount up to 37 %. Calculated density of the water and measured isotopic compositions demonstrate that the interflow depth changes in conjunction with the density gradient in the water column during fall. Partial pressure of CO2 indicates that the epilimnion is taking up CO2 from the atmosphere between spring and fall. The epilimnion is most enriched in 13CDIC in September and a progressive depletion of 13CDIC can be observed in the metalimnion from spring to late fall. This stratification is dependent on the local density stratification and the results demonstrate that parameters, which are indicating photosynthesis, are not necessarily linked to δ13CDIC values. In addition, the amount of primary production shows a strong discrepancy between summer 2009 and 2010, but δ13CDIC values of the epilimnion and metalimnion do not indicate variations. In the hypolimnion of the deep lake δ13CDIC values are constant and the progressive depletion allows tracing remineralization processes. The combination of stable carbon and oxygen isotopic compositions allows furthermore tracing Rhône River water fractions, as well as wastewater, stormwater and anthropogenic induced carbon in the water column of the shallow Bay of Vidy. In combination with the results of measured micropollutants, the study underlines that concentrations of certain substances may be related to the Rhône River interflow and/or remineralization of particulate organic carbon. Water quality monitoring and research should therefore be extended to the metalimnion as well as sediment water interface.
Resumo:
Objectives: To evaluate the shear bond strength and site of failure of brackets bonded to dry and wet enamel. Study design: 50 teeth were divided into ten groups of 5 teeth each (10 surfaces). In half the groups enamel was kept dry before bonding, and in the other half distilled water was applied to wet the surface after etching. The following groups were established: 1)Acid/Transbond-XT (dry/wet) XT; 2) Transbond Plus Self Etching Primer (TSEP)/Transbond-XT paste (dry/wet); 3) Concise (dry), Transbond MIP/Concise (wet), 4) FujiOrtho-LC (dry/wet); 5) SmartBond (dry/wet). Brackets were bonded to both buccal and lingual surfaces. Specimens were stored in distilled water (24 hours at 37ºC) and thermocycled. Brackets were debonded using a Universal testing machine (cross-head speed 1 mm/min). Failure sites were classified using a stereomicroscope. Results: No significant differences in bond strength were detected between the adhesives under wet and dry conditions except for Smart- Bond, whose bond strength was significantly lower under dry conditions. For all the adhesives most bond failures were of mixed site location except for Smartbond, which failed at the adhesive-bracket interface. Conclusions: Under wet conditions the bonding capacity of the adhesives tested was similar than under dry conditions, with the exception of SmartBond which improved under wet conditions
Resumo:
In the begining of April 2004, concentrations of NHx (NH3 + NH4+) were measured in surface waters of the Guanabara Bay. Concentrations varied from 2 to 143 mmol L-1. Ammonia exchange at the air-sea interface was quantified using a numerical model. No measurement of NH3 concentration in air (c air) was performed. Thus, calculations of NH3 flux were based on the assumptions of c air = 1 and 5 µg m-3. Fluxes were predominantly from the water to the atmosphere and varied from -20 to almost 3500 µg N m-2 h-1.
Resumo:
In Surface water concentrations of N2O were measured at 37 stations in Guanabara Bay and fluxes estimated across the air-sea interface. Concentrations averaged 8.2 ± 2.2 nmol L-1 and 90% of the stations showed supersaturation averaging 33%. N2O fluxes were estimated using a two-film model which is given by the product of the concentration difference across the film and the gas transfer coefficient (k w). Two parametrizations of k w were used which provided average fluxes of 0.3 and 3.0 µg N m-2 h-1. Flux measurements using floating chambers (not reported here) seem to agree with the upper limit of these estimates.
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
This paper considers the relationship between the mean temperature and humidity profiles and the fluxes of heat and moisture at cloud base and the base of the inversion in the cumulus-capped boundary layer. The relationships derived are based on an approximate form of the scalar-flux budget and the scaling properties of the turbulent kinetic energy (TKE) budget. The scalar-flux budget gives a relationship between the change in the virtual potential temperature across either the cloud base transition zone or the inversion and the flux at the base of the layer. The scaling properties of the TKE budget lead to a relationship between the heat and moisture fluxes and the mean subsaturation through the liquid-water flux. The 'jump relation' for the virtual potential temperature at cloud base shows the close connection between the cumulus mass flux in the cumulus-capped boundary layer and the entrainment velocity in the dry-convective boundary layer. Gravity waves are shown to be an important feature of the inversion.
Resumo:
A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional shallow water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for gas dynamics is defined, and a scheme, based on numerical characteristic decomposition is presented for obtaining approximate solutions to the linearised problem, and incorporates the technique of operator splitting. An average of the flow variables across the interface between cells is required, and this average is chosen to be the arithmetic mean for computational efficiency leading to arithmetic averaging. This is in contrast to usual ‘square root’ averages found in this type of Riemann solver, where the computational expense can be prohibitive. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second order scheme which avoids nonphysical, spurious oscillations. An extension to the two-dimensional equations with source terms is included. The scheme is applied to the one-dimensional problems of a breaking dam and reflection of a bore, and in each case the approximate solution is compared to the exact solution of ideal fluid flow. The scheme is also applied to a problem of stationary bore generation in a channel of variable cross-section. Finally, the scheme is applied to two other dam-break problems, this time in two dimensions with one having cylindrical symmetry. Each approximate solution compares well with those given by other authors.
Resumo:
The reactions between atmospheric oxidants and organic amphiphiles at the air water interface of an aerosol droplet may affect the size and critical supersaturation required for cloud droplet formation. We demonstrate that no reaction occurs between gaseous nitrogen dioxide (1000 ppm in air) and a monolayer of an insoluble amphiphile, oleic acid (cis-9-octadecenoic acid), at the air water interface which removes material from the air water interface. We present evidence that the NO2 isomerises the cis-9-octadecenoic (oleic) acid to trans-9-octadecenoic (elaidic) acid. The study presented here is important for future and previous studies of (1) the reaction between the nitrate radical, NO3, and thin organic films as NO2 is usually present in high concentrations in these experimental systems and (2) the effect of NO2 air pollution on the unsaturated fatty acids and lipids found at the air liquid surface of human lung lining fluid.
Resumo:
The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surfacescience experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10-5 Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a newCN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solidliquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solidliquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.