777 resultados para Volatility of volatility
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
Techniques for evaluating and selecting multivariate volatility forecasts are not yet understood as well as their univariate counterparts. This paper considers the ability of different loss functions to discriminate between a set of competing forecasting models which are subsequently applied in a portfolio allocation context. It is found that a likelihood-based loss function outperforms its competitors, including those based on the given portfolio application. This result indicates that considering the particular application of forecasts is not necessarily the most effective basis on which to select models.
Resumo:
We test the predictive ability of investor sentiment on the return and volatility at the aggregate market level in the U.S., four largest European countries and three Asia-Pacific countries. We find that in the U.S., France and Italy periods of high consumer confidence levels are followed by low market returns. In Japan both the level and the change in consumer confidence boost the market return in the next month. Further, shifts in sentiment significantly move conditional volatility in most of the countries, and in Italy such impacts lead to an increase in returns by 4.7% in the next month.
Resumo:
This paper employs a VAR-GARCH model to investigate the return links and volatility transmission between the S&P 500 and commodity price indices for energy, food, gold and beverages over the turbulent period from 2000 to 2011. Understanding the price behavior of commodity prices and the volatility transmission mechanism between these markets and the stock exchanges are crucial for each participant, including governments, traders, portfolio managers, consumers, and producers. For return and volatility spillover, the results show significant transmission among the S&P 500 and commodity markets. The past shocks and volatility of the S&P 500 strongly influenced the oil and gold markets. This study finds that the highest conditional correlations are between the S&P 500 and gold index and the S&P 500 and WTI index. We also analyze the optimal weights and hedge ratios for commodities/S&P 500 portfolio holdings using the estimates for each index. Overall, our findings illustrate several important implications for portfolio hedgers for making optimal portfolio allocations, engaging in risk management and forecasting future volatility in equity and commodity markets. © 2013 Elsevier B.V.
Resumo:
This paper examines the impact of allowing for stochastic volatility and jumps (SVJ) in a structural model on corporate credit risk prediction. The results from a simulation study verify the better performance of the SVJ model compared with the commonly used Merton model, and three sources are provided to explain the superiority. The empirical analysis on two real samples further ascertains the importance of recognizing the stochastic volatility and jumps by showing that the SVJ model decreases bias in spread prediction from the Merton model, and better explains the time variation in actual CDS spreads. The improvements are found particularly apparent in small firms or when the market is turbulent such as the recent financial crisis.
Resumo:
Recent years have seen global food prices rise and become more volatile. Price surges in 2008 and 2011 held devastating consequences for hundreds of millions of people and negatively impacted many more. Today one billion people are hungry. The issue is a high priority for many international agencies and national governments. At the Cannes Summit in November 2011, the G20 leaders agreed to implement five objectives aiming to mitigate food price volatility and protect vulnerable persons. To succeed, the global community must now translate these high level policy objectives into practical actions. In this paper, we describe challenges and unresolved dilemmas before the global community in implementing these five objectives. The paper describes recent food price volatility trends and an evaluation of possible causes. Special attention is given to climate change and water scarcity, which have the potential to impact food prices to a much greater extent in coming decades. We conclude the world needs an improved knowledge base and new analytical capabilities, developed in parallel with the implementation of practical policy actions, to manage food price volatility and reduce hunger and malnutrition. This requires major innovations and paradigm shifts by the global community.
Resumo:
As financial markets have become increasingly integrated internationally, the topic of volatility transmission across these markets has become more important. This thesis investigates how the volatility patterns of the world's main financial centres differ across foreign exchange, equity, and bond markets.
Resumo:
This paper considers the transmission of volatility in global foreign exchange, equity and bond markets. Using a multivariate GARCH framework which includes measures of realised volatility as explanatory variables, significant volatility and news spillovers are found to occur on the same trading day between Japan, Europe, and the United States. All markets exhibit significant degrees of asymmetry in terms of the transmission of volatility associated with good and bad news. There are also strong links between diffusive volatilities in all three markets, whereas jumpactivity is only importantwithin the equitymarkets. The results of this paper deepen our understanding of how news and volatility are propagated through global financial markets.
Resumo:
Based on unique news data relating to gold and crude oil, we investigate how news volume and sentiment, shocks in trading activity, market depth and trader positions unrelated to information flow covary with realized volatility. Positive shocks to the rate of news arrival, and negative shocks to news sentiment exhibit the largest effects. After controlling for the level of news flow and cross-correlations, net trader positions play only a minor role. These findings are at odds with those of [Wang (2002a). The Journal of Futures Markets, 22, 427–450; Wang (2002b). The Financial Review, 37, 295–316], but are consistent with the previous literature which doesn't find a strong link between volatility and trader positions.
Resumo:
Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.
Resumo:
The objective of this paper is to improve option risk monitoring by examining the information content of implied volatility and by introducing the calculation of a single-sum expected risk exposure similar to the Value-at-Risk. The figure is calculated in two steps. First, there is a need to estimate the value of a portfolio of options for a number of different market scenarios, while the second step is to summarize the information content of the estimated scenarios into a single-sum risk measure. This involves the use of probability theory and return distributions, which confronts the user with the problems of non-normality in the return distribution of the underlying asset. Here the hyperbolic distribution is used to describe one alternative for dealing with heavy tails. Results indicate that the information content of implied volatility is useful when predicting future large returns in the underlying asset. Further, the hyperbolic distribution provides a good fit to historical returns enabling a more accurate definition of statistical intervals and extreme events.
Resumo:
This study examines the intraday and weekend volatility on the German DAX. The intraday volatility is partitioned into smaller intervals and compared to a whole day’s volatility. The estimated intraday variance is U-shaped and the weekend variance is estimated to 19 % of a normal trading day. The patterns in the intraday and weekend volatility are used to develop an extension to the Black and Scholes formula to form a new time basis. Calendar or trading days are commonly used for measuring time in option pricing. The Continuous Time using Discrete Approximations model (CTDA) developed in this study uses a measure of time with smaller intervals, approaching continuous time. The model presented accounts for the lapse of time during trading only. Arbitrage pricing suggests that the option price equals the expected cost of hedging volatility during the option’s remaining life. In this model, time is allowed to lapse as volatility occurs on an intraday basis. The measure of time is modified in CTDA to correct for the non-constant volatility and to account for the patterns in volatility.
Resumo:
The objective of this paper is to suggest a method that accounts for the impact of the volatility smile dynamics when performing scenario analysis for a portfolio consisting of vanilla options. As the volatility smile is documented to change at least with the level of implied at-the-money volatility, a suitable model is here included in the calculation process of the simulated market scenarios. By constructing simple portfolios of index options and comparing the ex ante risk exposure measured using different pricing methods to realized market values, ex post, the improvements of the incorporation of the model are monitored. The analyzed examples in the study generate results that statistically support that the most accurate scenarios are those calculated using the model accounting for the dynamics of the smile. Thus, we show that the differences emanating from the volatility smile are apparent and should be accounted for and that the methodology presented herein is one suitable alternative for doing so.
Resumo:
The objective of this paper is to investigate the pricing accuracy under stochastic volatility where the volatility follows a square root process. The theoretical prices are compared with market price data (the German DAX index options market) by using two different techniques of parameter estimation, the method of moments and implicit estimation by inversion. Standard Black & Scholes pricing is used as a benchmark. The results indicate that the stochastic volatility model with parameters estimated by inversion using the available prices on the preceding day, is the most accurate pricing method of the three in this study and can be considered satisfactory. However, as the same model with parameters estimated using a rolling window (the method of moments) proved to be inferior to the benchmark, the importance of stable and correct estimation of the parameters is evident.