907 resultados para Visual Speaker Recognition, Visual Speech Recognition, Cascading Appearance-Based Features
Resumo:
This research has made contributions to the area of spoken term detection (STD), defined as the process of finding all occurrences of a specified search term in a large collection of speech segments. The use of visual information in the form of lip movements of the speaker in addition to audio and the use of topic of the speech segments, and the expected frequency of words in the target speech domain, are proposed. By using these complementary information, improvement in the performance of STD has been achieved which enables efficient search of key words in large collection of multimedia documents.
Resumo:
Abstract-The success of automatic speaker recognition in laboratory environments suggests applications in forensic science for establishing the Identity of individuals on the basis of features extracted from speech. A theoretical model for such a verification scheme for continuous normaliy distributed featureIss developed. The three cases of using a) single feature, b)multipliendependent measurements of a single feature, and c)multpleindependent features are explored.The number iofndependent features needed for areliable personal identification is computed based on the theoretcal model and an expklatory study of some speech featues.
Resumo:
We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.
Resumo:
This paper describes results obtained using the modified Kanerva model to perform word recognition in continuous speech after being trained on the multi-speaker Alvey 'Hotel' speech corpus. Theoretical discoveries have recently enabled us to increase the speed of execution of part of the model by two orders of magnitude over that previously reported by Prager & Fallside. The memory required for the operation of the model has been similarly reduced. The recognition accuracy reaches 95% without syntactic constraints when tested on different data from seven trained speakers. Real time simulation of a model with 9,734 active units is now possible in both training and recognition modes using the Alvey PARSIFAL transputer array. The modified Kanerva model is a static network consisting of a fixed nonlinear mapping (location matching) followed by a single layer of conventional adaptive links. A section of preprocessed speech is transformed by the non-linear mapping to a high dimensional representation. From this intermediate representation a simple linear mapping is able to perform complex pattern discrimination to form the output, indicating the nature of the speech features present in the input window.
Resumo:
In this paper, a novel video-based multimodal biometric verification scheme using the subspace-based low-level feature fusion of face and speech is developed for specific speaker recognition for perceptual human--computer interaction (HCI). In the proposed scheme, human face is tracked and face pose is estimated to weight the detected facelike regions in successive frames, where ill-posed faces and false-positive detections are assigned with lower credit to enhance the accuracy. In the audio modality, mel-frequency cepstral coefficients are extracted for voice-based biometric verification. In the fusion step, features from both modalities are projected into nonlinear Laplacian Eigenmap subspace for multimodal speaker recognition and combined at low level. The proposed approach is tested on the video database of ten human subjects, and the results show that the proposed scheme can attain better accuracy in comparison with the conventional multimodal fusion using latent semantic analysis as well as the single-modality verifications. The experiment on MATLAB shows the potential of the proposed scheme to attain the real-time performance for perceptual HCI applications.
Resumo:
This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.
Resumo:
In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.
Resumo:
abstract With many visual speech animation techniques now available, there is a clear need for systematic perceptual evaluation schemes. We describe here our scheme and its application to a new video-realistic (potentially indistinguishable from real recorded video) visual-speech animation system, called Mary 101. Two types of experiments were performed: a) distinguishing visually between real and synthetic image- sequences of the same utterances, ("Turing tests") and b) gauging visual speech recognition by comparing lip-reading performance of the real and synthetic image-sequences of the same utterances ("Intelligibility tests"). Subjects that were presented randomly with either real or synthetic image-sequences could not tell the synthetic from the real sequences above chance level. The same subjects when asked to lip-read the utterances from the same image-sequences recognized speech from real image-sequences significantly better than from synthetic ones. However, performance for both, real and synthetic, were at levels suggested in the literature on lip-reading. We conclude from the two experiments that the animation of Mary 101 is adequate for providing a percept of a talking head. However, additional effort is required to improve the animation for lip-reading purposes like rehabilitation and language learning. In addition, these two tasks could be considered as explicit and implicit perceptual discrimination tasks. In the explicit task (a), each stimulus is classified directly as a synthetic or real image-sequence by detecting a possible difference between the synthetic and the real image-sequences. The implicit perceptual discrimination task (b) consists of a comparison between visual recognition of speech of real and synthetic image-sequences. Our results suggest that implicit perceptual discrimination is a more sensitive method for discrimination between synthetic and real image-sequences than explicit perceptual discrimination.
Resumo:
This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems.
Resumo:
This review describes the oculo-visual problems likely to be encountered in Parkinson's disease (PD) with special reference to three questions: (1) are there visual symptoms characteristic of the prodromal phase of PD, (2) is PD dementia associated with specific visual changes, and (3) can visual symptoms help in the differential diagnosis of the parkinsonian syndromes, viz. PD, progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB), multiple system atrophy (MSA), and corticobasal degeneration (CBD)? Oculo-visual dysfunction in PD can involve visual acuity, dynamic contrast sensitivity, colour discrimination, pupil reactivity, eye movement, motion perception, and visual processing speeds. In addition, disturbance of visuo-spatial orientation, facial recognition problems, and chronic visual hallucinations may be present. Prodromal features of PD may include autonomic system dysfunction potentially affecting pupil reactivity, abnormal colour vision, abnormal stereopsis associated with postural instability, defects in smooth pursuit eye movements, and deficits in visuo-motor adaptation, especially when accompanied by idiopathic rapid eye movement (REM) sleep behaviour disorder. PD dementia is associated with the exacerbation of many oculo-visual problems but those involving eye movements, visuo-spatial function, and visual hallucinations are most characteristic. Useful diagnostic features in differentiating the parkinsonian symptoms are the presence of visual hallucinations, visuo-spatial problems, and variation in saccadic eye movement dysfunction.
Resumo:
The effectiveness of higher-order spectral (HOS) phase features in speaker recognition is investigated by comparison with Mel Cepstral features on the same speech data. HOS phase features retain phase information from the Fourier spectrum unlikeMel–frequency Cepstral coefficients (MFCC). Gaussian mixture models are constructed from Mel– Cepstral features and HOS features, respectively, for the same data from various speakers in the Switchboard telephone Speech Corpus. Feature clusters, model parameters and classification performance are analyzed. HOS phase features on their own provide a correct identification rate of about 97% on the chosen subset of the corpus. This is the same level of accuracy as provided by MFCCs. Cluster plots and model parameters are compared to show that HOS phase features can provide complementary information to better discriminate between speakers.
Resumo:
The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates the versatility of dataset refinement in the task of selecting suitable impostor datasets for use in GMM-based speaker verification. The use of refined Z- and T-norm datasets provided performance gains of 15% in EER in the NIST 2006 SRE over the use of heuristically selected datasets. The refined datasets were shown to generalise well to the unseen data of the NIST 2008 SRE.
Resumo:
This work presents an extended Joint Factor Analysis model including explicit modelling of unwanted within-session variability. The goals of the proposed extended JFA model are to improve verification performance with short utterances by compensating for the effects of limited or imbalanced phonetic coverage, and to produce a flexible JFA model that is effective over a wide range of utterance lengths without adjusting model parameters such as retraining session subspaces. Experimental results on the 2006 NIST SRE corpus demonstrate the flexibility of the proposed model by providing competitive results over a wide range of utterance lengths without retraining and also yielding modest improvements in a number of conditions over current state-of-the-art.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.