991 resultados para Velocity Measurements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The discovery of giant stars in the spectral regions G and K, showing moderate to rapid rotation and single behavior, namely with constant radial velocity, represents one important topic of study in Stellar Astrophysics. Indeed, such anomalous rotation clearly violates the theoretical predictions on the evolution of stellar rotation, since in evolved evolutionary stages is expected that the single stars essentially have low rotation due to the evolutionary expansion. This property is well-established from the observational point of view, with different studies showing that for single giant stars of spectral types G and K values of the rotation are typically smaller than 5kms−1 . This Thesis seeks an effective contribution to solving the paradigm described above, aiming to search for single stars of spectral types G and K with anomalous rotation, tipically rotation of moderate to rapid, in other luminosity classes. In this context, we analyzed a large stellar sample consisting of 2010 apparently single stars of luminosity classes IV, III, II and Ib with spectral types G and K, with rotational velocity v sin i and radial velocity measurements obtained from observations made by CORAVEL spectrometers. As a first result of impact we discovered the presence of anomalous rotators also among subgiants, bright giants and supergiants stars, namelly stars of luminosity classes IV, II and Ib, in contrast to previous studies, that reported anomalous rotators only in the luminosity class III classic giants. Such a finding of great significance because it allows us to analyze the presence of anomalous rotation at different intervals of mass, since the luminosity classes considered here cover a mass range between 0.80 and 20MJ, approximately. In the present survey we discovered 1 subgiant, 9 giants, 2 bright giants and 5 Ib supergiants, in spectral regions G and K, with values of v sin i ≥ 10kms−1 and single behavior. This amount of 17 stars corresponds to a frequency of 0.8% of G and K single evolved stars with anomalous rotation in the mentioned classes of luminosities, listed at the Bright Star Catalog, which is complete to visual magnitude 6.3. Given these new findings, based on a stellar sample complete in visual magnitude, as that of the Bright Star Catalog, we conducted a comparative statistical analysis using the Kolmogorov- Smirnov test, from where we conclude that the distributions of rotational velocity, v sin i, for single evolved stars with anomalous rotation in luminosity classes III and II, are similar to the distributions of v sin i for spectroscopic binary systems with evolved components with the same spectral type and luminosity class. This vii result indicates that the process of coalescence between stars of a binary system might be a possible mechanism to explain the observed abnormal rotation in the referred abnormal rotators, at least among the giants and bright giants, where the rotation in excess would be associated with the transfer of angular momentum for the star resulting from the merger. Another important result of this Thesis concerns the behavior of the infrared emission in most of the stars with anomalous rotation here studied, where 14 stars of the sample tend to have an excess in IR compared with single stars with low rotation, within of their luminosity class. This property represents an additional link in the search for the physical mechanisms responsible for the abnormal observed rotation, since recent theoretical studies show that the accretion of objects of sub-stellar mass, such as brown dwarfs and giant planets, by the hosting star, can significantly raise its rotation, producing also a circumstellar dust disk. This last result seems to point in that direction, since it is not expected that dust disks occurring during the stage of star formation can survive until the stages of subgiants, giants and supergiants Ib. In summary, in this Thesis, besides the discovery of single G and K evolved stars of luminosity classes IV, II and Ib with anomalously high rotation compared to what is predicted by stellar evolution theory, we also present the frequency of these abnormal rotators in a stellar sample complete to visual magnitude 6.3. We also present solid evidence that coalescence processes in stellar binary systems and processes of accretion of brown dwarfs star or giant planets, by the hosting stars, can act as mechanisms responsible for the puzzling phenomenon of anomalous rotation in single evolved stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flemish Pass, located at the western subpolar margin, is a passage (sill depth 1200 m) that is constrained by the Grand Banks and the underwater plateau Flemish Cap. In addition to the Deep Western Boundary Current (DWBC) pathway offshore of Flemish Cap, Flemish Pass represents another southward transport pathway for two modes of Labrador Sea Water (LSW), the lightest component of North Atlantic Deep Water carried with the DWBC. This pathway avoids potential stirring regions east of Flemish Cap and deflection into the interior North Atlantic. Ship-based velocity measurements between 2009 and 2013 at 47°N in Flemish Pass and in the DWBC east of Flemish Cap revealed a considerable southward transport of Upper LSW through Flemish Pass (15-27%, -1.0 to -1.5 Sv). About 98% of the denser Deep LSW were carried around Flemish Cap as Flemish Pass is too shallow for considerable transport of Deep LSW. Hydrographic time series from ship-based measurements show a significant warming of 0.3°C/decade and a salinification of 0.03/decade of the Upper LSW in Flemish Pass between 1993 and 2013. Almost identical trends were found for the evolution in the Labrador Sea and in the DWBC east of Flemish Cap. This indicates that the long-term hydrographic variability of Upper LSW in Flemish Pass as well as in the DWBC at 47°N is dominated by changes in the Labrador Sea, which are advected southward. Fifty years of numerical ocean model simulations in Flemish Pass suggest that these trends are part of a multidecadal cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrasonic P wavc transmission seismograms recorded on sediment cores have been analyzed to study the acoustic and estimate the clastic properties of marine sediments from different provinces dominated by terrigenous, calcareous, amI diatomaceous sedimentation. Instantaneous frequencies computed from the transmission seismograms are displayed as gray-shaded images to give an acoustic overview of the lithology of each core. Ccntirneter-scale variations in the ultrasonic waveforms associated with lithological changes are illustrated by wiggle traces in detail. Cross-correlation, multiple-filter, and spectral ratio techniques are applied to derive P wave velocities and attenuation coefficients. S wave velocities and attenuation coefficients, elastic moduli, and permeabilities are calculated by an inversion scheme based on the Biot-Stoll viscoelastic model. Together wilh porosity measurements, P and S wave scatter diagrams are constructed to characterize different sediment types by their velocity- and attenuation-porosity relationships. They demonstrate that terrigenous, calcareous, and diatomaceous sediments cover different velocity- and attenuation-porosity ranges. In terrigcnous sediments, P wave vclocities and attenuation coefficients decrease rapidly with increasing porosity, whereas S wave velocities and shear moduli are very low. Calcareous sediments behave similarly at relatively higher porosities. Foraminifera skeletons in compositions of terrigenous mud and calcareous ooze cause a stiffening of the frame accompanied by higher shear moduli, P wave velocities, and attenuation coefficients. In diatomaceous ooze the contribution of the shear modulus becomes increasingly important and is controlled by the opal content, whereas attenuation is very low. This leads to the opportunity to predict the opal content from nondestructive P wave velocity measurements at centimeter-scale resolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first image of the Madeira upper crustal structure, using ambient seismic noise tomography. 16 months of ambient noise, recorded in a dense network of 26 seismometers deployed across Madeira, allowed reconstructing Rayleigh wave Green's functions between receivers. Dispersion analysis was performed in the short period band from 1.0 to 4.0 s. Group velocity measurements were regionalized to obtain 2D tomographic images, with a lateral resolution of 2.0 km in central Madeira. Afterwards, the dispersion curves, extracted from each cell of the 2D group velocity maps, were inverted as a function of depth to obtain a 3D shear wave velocity model of the upper crust, from the surface to a depth of 2.0 km. The obtained 3D velocity model reveals features throughout the island that correlates well with surface geology and island evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) is responsible for managing over 2500 miles of waterways and hundreds of water control structures. Many of these control structures are experiencing erosion, known as scour, of the sediment downstream of the structure. Laboratory experiments were conducted in order to investigate the effectiveness of two-dimensional air diffusers and plate extensions (without air injection) on a 1/30 scale model of one of SFWMD gated spillway structures, the S65E gated spillway. A literature review examining the results of similar studies was conducted. The experimental design for this research was based off of previous work done on the same model. Scour of the riverbed downstream of gated spillway structures has the potential to cause serious damage, as it can expose the foundation of the structure, which can lead to collapse. This type of scour has been studied previously, but it continues to pose a risk to water control structures and needs to be studied further. The hydraulic scour channel used to conduct experiments contains a head tank, flow straighteners, gated spillway, stilling basin, scour chamber, sediment trap, and tailwater tank. Experiments were performed with two types of air diffusers. The first was a hollow, acrylic, triangular end sill with air injection holes on the upstream face, allowing for air injection upstream. The second diffuser was a hollow, acrylic rectangle that extended from the triangular end sill with air injection holes in the top face, allowing for vertical air injection, perpendicular to flow. Detailed flow and bed measurements were taken for six trials for each diffuser ranging from no air injection to 5 rows of 70 holes of 0.04" diameter. It was found that with both diffusers, the maximum amount of air injection reduced scour the most. Detailed velocity measurements were taken for each case and turbulence statistics were analyzed to determine why air injection reduces scour. It was determined that air injection reduces streamwise velocity and turbulence. Another set of experiments was performed using an acrylic extension plate with no air injection to minimize energy costs. Ten different plate lengths were tested. It was found that the location of deepest scour moved further downstream with each plate length. The 32-cm plate is recommended here. Detailed velocity measurements were taken after the cases with the 32-cm plate and no plate had reached equilibrium. This was done to better understand the flow patterns in order to determine what causes the scour reduction with the extension plates. The extension plate reduces the volume of scour, but more importantly translates the deepest point of scour downstream from the structure, lessening the risk of damage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objetivo: Evaluar las propiedades psicométricas de los instrumentos para la medición de la actividad física en adultos de 18-65 años con discapacidad física por lesión de médula espinal. Materiales y métodos: Revisión sistemática. Las bases de datos de Medline, Scopus, Web of Science y 19 revistas especializadas fueron consultadas durante once días entre abril de 2015 y febrero de 2016 para identificar estudios originales de validación, sin límite de tiempo y que estuvieran publicados en español, francés y/o inglés. La calidad metodológica de los instrumentos de medición se evaluó usando las diferentes cajas de propiedades de la lista COSMIN. Resultados: Se identificaron 9229 referencias, de las cuales sólo 12 cumplieron los criterios de inclusión, dando como resultado 13 instrumentos de medición. Se evaluaron seis propiedades psicométricas. La propiedad más común fue la confiabilidad, además se observó que la calidad metodológica de los estudios incluidos no representa los resultados de las propiedades psicométricas de los instrumentos de medición. La calidad metodológica de los instrumentos para la evaluación de la actividad física en población con lesión medular espinal es “baja” para propiedades como consistencia interna, error de medición, sensibilidad, validez de criterio (con excepción del WISCI II que tiene buena validez) y excelente para validez de contenido y fiabilidad. Conclusión: Se ha encontrado que instrumentos empleados hasta el presente en la medición de la actividad física en población con discapacidad física relacionada con lesión de médula espinal han sido creados para otros tipos de discapacidad y otros instrumentos deben ser validados en futuros estudios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In highly urbanized coastal lowlands, effective site characterization is crucial for assessing seismic risk. It requires a comprehensive stratigraphic analysis of the shallow subsurface, coupled with the precise assessment of the geophysical properties of buried deposits. In this context, late Quaternary paleovalley systems, shallowly buried fluvial incisions formed during the Late Pleistocene sea-level fall and filled during the Holocene sea-level rise, are crucial for understanding seismic amplification due to their soft sediment infill and sharp lithologic contrasts. In this research, we conducted high-resolution stratigraphic analyses of two regions, the Pescara and Manfredonia areas along the Adriatic coastline of Italy, to delineate the geometries and facies architecture of two paleovalley systems. Furthermore, we carried out geophysical investigations to characterize the study areas and perform seismic response analyses. We tested the microtremor-based horizontal-to-vertical spectral ratio as a mapping tool to reconstruct the buried paleovalley geometries. We evaluated the relationship between geological and geophysical data and identified the stratigraphic surfaces responsible for the observed resonances. To perform seismic response analysis of the Pescara paleovalley system, we integrated the stratigraphic framework with microtremor and shear wave velocity measurements. The seismic response analysis highlights strong seismic amplifications in frequency ranges that can interact with a wide variety of building types. Additionally, we explored the applicability of artificial intelligence in performing facies analysis from borehole images. We used a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age to outline a novel, deep-learning-based approach for performing automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. We propose an automated model to rapidly characterize sediment cores, reproducing the sedimentologist's interpretation, and providing guidance for stratigraphic correlation and subsurface reconstructions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous types of acute respiratory failure are routinely treated using non-invasive ventilatory support (NIV). Its efficacy is well documented: NIV lowers intubation and death rates in various respiratory disorders. It can be delivered by means of face masks or head helmets. Currently the scientific community’s interest about NIV helmets is mostly focused on optimising the mixing between CO2 and clean air and on improving patient comfort. To this end, fluid dynamic analysis plays a particularly important role and a two- pronged approach is frequently employed. While on one hand numerical simulations provide information about the entire flow field and different geometries, they exhibit require huge temporal and computational resources. Experiments on the other hand help to validate simulations and provide results with a much smaller time investment and thus remain at the core of research in fluid dynamics. The aim of this thesis work was to develop a flow bench and to utilise it for the analysis of NIV helmets. A flow test bench and an instrumented mannequin were successfully designed, produced and put into use. Experiments were performed to characterise the helmet interface in terms of pressure drop and flow rate drop over different inlet flow rates and outlet pressure set points. Velocity measurements by means of Particle Image Velocimetry were performed. Pressure drop and flow rate characteristics from experiments were contrasted with CFD data and sufficient agreement was observed between both numerical and experimental results. PIV studies permitted qualitative and quantitative comparisons with numerical simulation data and offered a clear picture of the internal flow behaviour, aiding the identification of coherent flow features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyzed observations of interstellar neutral helium (ISN He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN He simulation model, presented in the companion paper by Sokol et al. (2015b), along with a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of similar to 6 degrees, with the other parameters varying accordingly along the parameter tube, and the minimum chi(2) value is larger than expected. We found, however, that the Mach number of the ISN He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal or a process that is not accounted for in the current physical model of ISN He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda(ISNHe) = 255 degrees.8 +/- 0 degrees.5, beta(ISNHe) = 5 degrees.16 +/- 0 degrees.10, T-ISNHe = 7440 +/- 260 K, nu(SNHe) = 25.8 +/- 0.4 km s(-1), and M-ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Slowslip forms part of the spectrum of fault behaviour between stable creep and destructive earthquakes. Slow slip occurs near the boundaries of large earthquake rupture zones and may sometimes trigger fast earthquakes. It is thought to occur in faults comprised of rocks that strengthen under fast slip rates, preventing rupture as a normal earthquake, or on faults that have elevated pore-fluid pressures. However, the processes that control slow rupture and the relationship between slow and normal earthquakes are enigmatic. Here we use laboratory experiments to simulate faulting in natural rock samples taken from shallow parts of the Nankai subduction zone, Japan, where very low-frequency earthquakes - a form of slow slip - have been observed.We find that the fault rocks exhibit decreasing strength over millimetre-scale slip distances rather than weakening due to increasing velocity. However, the sizes of the slip nucleation patches in our laboratory simulations are similar to those expected for the very lowfrequency earthquakes observed in Nankai. We therefore suggest that this type of fault-weakening behaviour may generate slow earthquakes. Owing to the similarity between the expected behaviour of slow earthquakes based on our data, and that of normal earthquakes during nucleation, we suggest that some types of slow slip may represent prematurely arrested earthquakes.