971 resultados para Vegetation structure
Resumo:
A hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae) in northern Spain has been analyzed for variation in morphology and ecology. These species are readily distinguished by the number of stridulatory pegs on the hind femur. Both sexes are fully winged and inhabit disturbed habitats throughout the study area. We develop a maximum-likelihood approach to fitting a two-dimensional cline to geographical variation in quantitative traits and for estimating associations of population mean with local habitat. This method reveals a cline in peg number approximately 30 km south of the Picos de Europa Mountains that shows substantial deviations in population mean compared with the expectations of simple tension zone models. The inclusion of variation in local vegetation in the model explains a significant proportion of the residual variation in peg number, indicating that habitat-genotype associations contribute to the observed spatial pattern. However, this association is weak, and a number of populations continue to show strong deviations in mean even after habitat is included in the final model. These outliers may be the result of long-distance colonization of sites distant from the cline center or may be due to a patchy pattern of initial contact during postglacial expansion. As well as contrasting with the smooth hybrid zones described for Chorthippus parallelus, this situation also contrasts with the mosaic hybrid zones observed in Gryllus crickets and in parts of the hybrid zone between Bombina toad species, where habitat-genotype associations account for substantial amounts of among-site variation.
Resumo:
With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.
Resumo:
The species composition of the seasonal várzea forest growing on a bank of the Ilha de Marchantaria / lower Solimões-Amazonas River, Brazil was studied in an area of slightly less than one hectare. Two biomass plots were harvested. Forty-seven arboreal species representing 46 genera in 25 families were recorded. Tree density was 1086 per hectare. Total basal area was 45 m2 ha1. Mean species density was 6.5 ± 1.98 per 100 m2. The most abundant species were Crataeva benthamii(Capparidaceae), Laetia corymbutosa(Flacourtiaceae) and Vitex cymosa(Verbenaceae). The highest basal area per species was 10.2 m2 for Pseudobombax munguba(Bombacaceae). The common species are known to be typical floristic elements of the seasonal varzea forest. Above ground dry biomass was equal to 97 and 255 t ha', respectively. Its chemical composition is characterized by comparatively high bioelement contents equal to 2.4 percent on the average. Calcium was the most important bioelement. Structure of the forest and age darings of trees allow the successional classification of the stands.
Resumo:
The taxonomic composition, observed and estimated species richness, and patterns of community structure of arboreal spider assemblages in eleven sites surrounding the "Banhado Grande" wet plain in the state of Rio Grande do Sul, Brazil, are presented. These sites represent three different vegetational types: hillside (four sites), riparian (five sites) and flooded forests (two sites). The spiders were captured by beating on foliage and "aerial litter". A sample was defined as the result of beating on twenty bushes, tree branches or "aerial litter" clusters, which roughly corresponds to one-hour search effort per sample. Fifty five samples (five per site) were obtained, resulting in an observed richness of 212 species present as adult or identifiable juveniles. The total richness for all samples was estimated to be between 250 (Bootstrap) to 354 species (Jackknife 2). Confidence intervals of both sample and individual-based rarefaction curves for each vegetation type clearly indicated that flooded forest is the poorest vegetation type with respect to spider species richness, with hillside and riparian forests having a similar number of species. The percentage complementarity between the eleven sites indicated that all sites contain a distinct set of species, irrespective of their vegetation types. Nevertheless, the spider assemblages in riparian and hillside forests are more similar with respect to each other than when compared to flooded forest. Both cluster and nonmetric multidimensional scaling analyses showed no strong correspondence between the spider arboreal fauna and the three vegetation types. Moreover, a Mantel test revealed no significant association between species composition and geographic distance among sites.
Resumo:
We analyzed the effects of environmental factors on abundance, species richness, and functional group richness of Leptophlebiidae in 16 sampling points along four Cerrado streams. Across three periods of 2005, we collected 5,492 larvae from 14 species in stream bed substrate. These species belong to three functional feeding groups: scrapers, filtering collectors and shredders. The abundance and species richness were not affected by water quality, but habitat quality related to presence of riparian vegetation had positive effects on the abundance of shredders. Our results add important information on the natural history of the species and functional groups of aquatic insects and also provide relevant data for the monitoring and conservation of streams in the Brazilian Cerrado.
Resumo:
Muscina stabulans, M. domestica, Chrysomya putoria, C. megacephala and Stomoxys calcitrans were the most abundant muscoid flies captured in a poultry facility in southeastern Brazil. We examined the gonadotrophic profiles of the females caught at different sites and different times and found that Mu. stabulans and M. domestica, the predominant species, presented similar gonadotrophic profiles only when captured on the manure under the cages, but very different and sometimes opposite gonadotrophic profiles when sampled from wooden posts, vegetation or electric cords. We also determined sex ratios and relative abundance for these two species and found significant differences between them. More than 50% of the females of both species of Chrysomya captured on manure carried eggs or exhibited signs of recent oviposition. The vast majority of S. calcitrans presented ovaries with eggs or signs of recent oviposition. A small proportion of them had ovaries in the recent emerged condition. Our data on ovarian stages, sex ratio and relative abundance allowed us to associate different gonadotrophic profiles with each site and characterize each site as a resting, ovipositing or mating site.
Resumo:
Mountain ranges are biodiversity hotspots worldwide and provide refuge to many organisms under contemporary climate change. Gathering field information on mountain biodiversity over time is of primary importance to understand the response of biotic communities to climate changes. For plants, several long-term observation sites and networks of mountain biodiversity are emerging worldwide to gather field data and monitor altitudinal range shifts and community composition changes under contemporary climate change. Most of these monitoring sites, however, focus on alpine ecosystems and mountain summits, such as the global observation research initiative in alpine environments (GLORIA). Here we describe the Alps Vegetation Database, a comprehensive community level archive (GIVD ID EU-00-014) which aims at compiling all available geo-referenced vegetation plots from lowland forests to alpine grasslands across the greatest mountain range in Europe: the Alps. This research initiative was funded between 2008 and 2011 by the Danish Council for Independent Research and was part of a larger project to compare cross-scale plant community structure between the Alps and the Scandes. The Alps Vegetation Database currently harbours 35,731 geo-referenced vegetation plots and 5,023 valid taxa across Mediterranean, temperate and alpine environments. The data are mainly used by the main contributors of the Alps Vegetation Database in an ecoinformatics approach to test hypotheses related to plant macroecology and biogeography, but external proposals for joint collaborations are welcome.
Resumo:
Distinct genetic structure in populations of Chrysoperla externa (Hagen) (Neuroptera, Chrysopidae) shown by genetic markers ISSR and COI gene. Green lacewings are generalist predators, and the species Chrysoperla externa presents a great potential for use in biological control of agricultural pests due to its high predation and reproduction capacities, as well as its easy mass rearing in the laboratory. The adaptive success of a species is related to genetic variability, so that population genetic studies are extremely important in order to maximize success of the biological control. Thus, the present study used nuclear (Inter Simple Sequence Repeat - ISSR) and mitochondrial (Cytochrome Oxidase I - COI) molecular markers to estimate the genetic variability of 12 populations in the São Paulo State, Brazil, as well as the genetic relationships between populations. High levels of genetic diversity were observed for both markers, and the highest values of genetic diversity appear associated with municipalities that have the greatest areas of native vegetation. There was high haplotype sharing, and there was no correlation between the markers and the geographic distribution of the populations. The AMOVA indicated absence of genetic structure for the COI gene, suggesting that the sampled areas formed a single population unit. However, the great genetic differentiation among populations showed by ISSR demonstrates that these have been under differentiation after their expansion or may also reflect distinct dispersal behavior between males and females.
Effects of forest conversion on the assemblages' structure of aquatic insects in subtropical regions
Resumo:
The effects of forest conversion to agricultural land uses on assemblages of aquatic insects were analyzed in subtropical streams. Organisms and environmental variables were collected in six low-order streams: three streams located in a forested area, and three in areas converted to agricultural land uses. We expected that the aquatic insects' assemblage attributes would be significantly affected by forest conversion, as well as by environmental variables. Streams in converted areas presented lower species richness, abundance and proportion of sensitive insect taxa. The ANOSIM test evidenced strong difference in EPT assemblage structure between streams of forested and converted areas. The ISA test evidenced several EPT genera with high specificity to streams in forested areas and only one genus related to streams in converted areas. Thus, the impacts of the conversion of forested area to agricultural land uses have significantly affected the EPT assemblages, while environmental variables were not affected. We suggest that the effects detected can be influenced by two processes related to vegetation cover: i) lower input of allochthonous material, and ii) increased input of fine sediments in streams draining converted areas.
Resumo:
According to prevailing ecological theory one would expect the most stable vegetation on sites which are least disturbed (Odum 1971). According to theory one would also expect the most diversity of species on undisturbed sites (Odum 1971). This stable and diverse community would be produced over a period of many years through a process of plant succession where annual herbs are replaced by perennial herbs and finally woody plants would come to dominate and perpetuate the community. Another ecological theory holds that the complexity (structure and species diversity) of a plant community is dependent upon the amount of disturbance to which it is subjected (Woodwell, 1970). According to this theory the normal succession of a plant community through its various stages may be arrested at some point depending upon the nature and severity of the disturbance. In applying these theories to roadside vegetation it becomes apparent that mass herbicide spraying and extensive mowing of roadsides has produced a relatively simple and unstable vegetation. It follows that if disturbances were reduced not only would the roadside plant community increase in stability but maintenance costs and energy usage would be reduced. In this study we have investigated several aspects of reduced disturbances on roadside vegetation. Research has centered on the effectiveness of spot spraying techniques on noxious weed control, establishment of native grass cover where ditch cleaning and other disturbance has left the bare soil exposed and the response of roadside vegetation when released from annual mass spraying.
Resumo:
The Brazilian savanna is a mosaic of phytophysiognomies influenced by edaphic and topographic factors that range from the occurrence of fires to anthropic disturbance. The goal of this study was a comparative analysis between two cerrado areas in southeastern Goiás, relating the floristic composition and structure of the vegetation to soil properties to better understand the physiognomic characteristics of the region. Twenty-five 20 × 20 m plots were used. All plants with circumference at breast height of more than 15 cm were measured. Soil samples collected at a depth of 0-20 cm were subjected to physical and chemical analyses. Canonical correspondence analysis (CCA) was used to detect possible correlations between the soil properties and species abundance and distribution. The density and total basal area were 1,647 ind/ha and 15.57 m2/ha, respectively, in Ouroana. At this site, 107 species were sampled. In Montes Claros de Goiás, the density and total basal area were 781 ind/ha and 17.62 m2/ha, and 120 species were sampled. The soil texture of Ouroana was sandy and significantly different from the medium to clayey texture of Montes Claros. The soils of both areas are dystrophic, however, more fertile in Montes Claros and aluminum-toxic in Ouroana. The species of vegetation were distributed according to soil fertility levels. The CCAs grouped species according to soil properties that defined location and abundance as well as the phytophysiognomies of the studied areas.
Resumo:
The first part of a general survey of the vegetation of Catalonia andAndorra, this paper reports all the phytocoenological associations and subassociations recorded in this area. For each community, we provide the correct name and usual synonyms, its typification (where appropriate), all the references including relevés, and the most outstanding features of its structure, species composition, ecology, distribution and diversity. Moreover, associations and subassociations are ordered appropriately in a syntaxonomic scheme. Syntaxonomic ranks are considered in a fairly broad, conservative sense. This classification established 101 associations, which correspond to the classes Lemnetea, Zosteretea, Potametea, Littorelletea, Montio-Cardaminetea, Phragmiti-Magnocaricetea, Scheuchzerio-Caricetea, Isoeto-Nanojuncetea and Molinio-Arrhenatheretea.
Resumo:
The late Early Cretaceous greenhouse climate has been studied intensively based on proxy data derived essentially from open marine archives. In contrast, information on continental climatic conditions and on the accompanying response of vegetation is relatively scarce, most notably owing to the stratigraphic uncertainties associated with many Lower Cretaceous terrestrial deposits. Here, we present a palynological record from Albian near-shore deposits of the Lusitanian Basin of W Portugal, which have been independently dated using Sr-isotope signals derived from low-Mg oyster shell calcite. Sr-87/Sr-86 values fluctuate between 0.707373 +/- 0.00002 and 0.707456 +/- 0.00003; absolute values and the overall stratigraphic trend match well with the global open marine seawater signature during Albian times. Based on the new Sr-isotope data, existing biostratigraphic assignments of the succession are corroborated and partly revised. Spore-pollen data provide information on the vegetation community structure and are flanked by sedimentological and clay mineralogical data used to infer the overall climatic conditions prevailing on the adjacent continent. Variations in the distribution of climate-sensitive pollen and spores indicate distinct changes in moisture availability across the studied succession with a pronounced increase in hygrophilous spores in late Early Albian times. Comparison with time-equivalent palynofloras from the Algarve Basin of southern Portugal shows pronounced differences in the xerophyte/hygrophyte ratio, interpreted to reflect the effect of a broad arid climate belt covering southern and southeastern Iberia during Early Albian times.
Resumo:
The objectives of this work were to evaluate the richness and diversity of the Poduromorpha fauna in two biotopes in Restinga de Maricá, RJ, Brazil, to identify the characteristic species of each biotope and to determine the relationships between the community structure and the abiotic environmental parameters. Representatives of the Poduromorpha (Collembola) order were studied under an ecological viewpoint in halophyte-psammophyte vegetation and foredune zone in preserved areas of Restinga de Maricá, a sand dune environment in the state of Rio de Janeiro, Brazil. The foredune zone showed the highest diversity, richness and equitability of springtail species. Differences in the fundamental, accessory and accidental species in each environment were encountered. Paraxenylla piloua was found to be an indicator species of the halophyte-psammophyte vegetation, while Friesea reducta, Pseudachorutes difficilis and Xenylla maritima were indicators of the foredune zone. The canonical correspondence analysis indicated pH, organic matter content and soil humidity as the most important factors influencing the spatiotemporal distribution of the species.
Resumo:
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerrado stricto sensu" and "campo sujo"), under different fire regimes, and a 20-year-old active palisadegrass pasture in the Central Plateau of Brazil. Microbial biomass was higher in the native plots than in the pasture, and the highest monthly values were observed during the rainy season in the native plots. No significant differences were observed between fire regimes or between communities from the two native vegetation types. However, the principal component (PC) analysis separated the microbial communities by vegetation cover (native x pasture) and season (wet x dry), accounting for 45.8% (PC1 and PC3) and 25.6% (PC2 and PC3), respectively, of the total PLFA variability. Changes in land cover and seasonal rainfall in Cerrado ecosystems have significant effects on the total density of soil microorganisms and on the abundance of microbial groups, especially Gram-negative and Gram-positive bacteria.