981 resultados para Variance.
Resumo:
The concept of effective population size (N(e)) is an important measure of representativeness in many areas. In this research, we consider the statistical properties of the number of contributed gametes under practical situations by adapting Crow and Denninston's (1988) N(e) formulas for dioecious species. Three sampling procedures were considered. In all circumstances, results show that as the offspring sex ratio (r) deviates from 0.5, N(e) values become smaller, and the efficiency of gametic control for increasing N(e) is reduced. For finite populations, where all individuals are potentially functional parents, the reduction in N(e) due to an unequal sex ratio can be compensated for through female gametic control when 0.28 <= r <= 0.72. This outcome is important when r is unknown. When only a fraction of the individuals in a population is taken for reproduction, N(e) is meaningful only if the size of the reference population is clearly defined. Gametic control is a compensating factor in accession regeneration when the viability of the accession is around 70 or 75%. For germ-plasm collection, when parents are a very small fraction of the population, maximum N(e) will be approximately 47 and 57% of the total number of offspring sampled, with female gametic control, r varying between 0.3 and 0.5, and being constant over generations.
Resumo:
In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background For analyzing longitudinal familial data we adopted a log-linear form to incorporate heterogeneity in genetic variance components over the time, and additionally a serial correlation term in the genetic effects at different levels of ages. Due to the availability of multiple measures on the same individual, we permitted environmental correlations that may change across time. Results Systolic blood pressure from family members from the first and second cohort was used in the current analysis. Measures of subjects receiving hypertension treatment were set as censored values and they were corrected. An initial check of the variance and covariance functions proposed for analyzing longitudinal familial data, using empirical semi-variogram plots, indicated that the observed trait dispersion pattern follows the assumptions adopted. Conclusion The corrections for censored phenotypes based on ordinary linear models may be an appropriate simple model to correct the data, ensuring that the original variability in the data was retained. In addition, empirical semi-variogram plots are useful for diagnosis of the (co)variance model adopted.
Resumo:
This thesis is based on five papers addressing variance reduction in different ways. The papers have in common that they all present new numerical methods. Paper I investigates quantitative structure-retention relationships from an image processing perspective, using an artificial neural network to preprocess three-dimensional structural descriptions of the studied steroid molecules. Paper II presents a new method for computing free energies. Free energy is the quantity that determines chemical equilibria and partition coefficients. The proposed method may be used for estimating, e.g., chromatographic retention without performing experiments. Two papers (III and IV) deal with correcting deviations from bilinearity by so-called peak alignment. Bilinearity is a theoretical assumption about the distribution of instrumental data that is often violated by measured data. Deviations from bilinearity lead to increased variance, both in the data and in inferences from the data, unless invariance to the deviations is built into the model, e.g., by the use of the method proposed in paper III and extended in paper IV. Paper V addresses a generic problem in classification; namely, how to measure the goodness of different data representations, so that the best classifier may be constructed. Variance reduction is one of the pillars on which analytical chemistry rests. This thesis considers two aspects on variance reduction: before and after experiments are performed. Before experimenting, theoretical predictions of experimental outcomes may be used to direct which experiments to perform, and how to perform them (papers I and II). After experiments are performed, the variance of inferences from the measured data are affected by the method of data analysis (papers III-V).
Resumo:
[EN] This paper proposes the incorporation of engineering knowledge through both (a) advanced state-of-the-art preference handling decision-making tools integrated in multiobjective evolutionary algorithms and (b) engineering knowledge-based variance reduction simulation as enhancing tools for the robust optimum design of structural frames taking uncertainties into consideration in the design variables.The simultaneous minimization of the constrained weight (adding structuralweight and average distribution of constraint violations) on the one hand and the standard deviation of the distribution of constraint violation on the other are handled with multiobjective optimization-based evolutionary computation in two different multiobjective algorithms. The optimum design values of the deterministic structural problem in question are proposed as a reference point (the aspiration level) in reference-point-based evolutionary multiobjective algorithms (here g-dominance is used). Results including
Resumo:
OBJECTIVES: This paper examines four different levels of possible variation in symptom reporting: occasion, day, person and family. DESIGN: In order to rule out effects of retrospection, concurrent symptom reporting was assessed prospectively using a computer-assisted self-report method. METHODS: A decomposition of variance in symptom reporting was conducted using diary data from families with adolescent children. We used palmtop computers to assess concurrent somatic complaints from parents and children six times a day for seven consecutive days. In two separate studies, 314 and 254 participants from 96 and 77 families, respectively, participated. A generalized multilevel linear models approach was used to analyze the data. Symptom reports were modelled using a logistic response function, and random effects were allowed at the family, person and day level, with extra-binomial variation allowed for on the occasion level. RESULTS: Substantial variability was observed at the person, day and occasion level but not at the family level. CONCLUSIONS: To explain symptom reporting in normally healthy individuals, situational as well as person characteristics should be taken into account. Family characteristics, however, would not help to clarify symptom reporting in all family members.
Resumo:
In Malani and Neilsen (1992) we have proposed alternative estimates of survival function (for time to disease) using a simple marker that describes time to some intermediate stage in a disease process. In this paper we derive the asymptotic variance of one such proposed estimator using two different methods and compare terms of order 1/n when there is no censoring. In the absence of censoring the asymptotic variance obtained using the Greenwood type approach converges to exact variance up to terms involving 1/n. But the asymptotic variance obtained using the theory of the counting process and results from Voelkel and Crowley (1984) on semi-Markov processes has a different term of order 1/n. It is not clear to us at this point why the variance formulae using the latter approach give different results.
Resumo:
Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique which is commonly used to quantify changes in blood oxygenation and flow coupled to neuronal activation. One of the primary goals of fMRI studies is to identify localized brain regions where neuronal activation levels vary between groups. Single voxel t-tests have been commonly used to determine whether activation related to the protocol differs across groups. Due to the generally limited number of subjects within each study, accurate estimation of variance at each voxel is difficult. Thus, combining information across voxels in the statistical analysis of fMRI data is desirable in order to improve efficiency. Here we construct a hierarchical model and apply an Empirical Bayes framework on the analysis of group fMRI data, employing techniques used in high throughput genomic studies. The key idea is to shrink residual variances by combining information across voxels, and subsequently to construct an improved test statistic in lieu of the classical t-statistic. This hierarchical model results in a shrinkage of voxel-wise residual sample variances towards a common value. The shrunken estimator for voxelspecific variance components on the group analyses outperforms the classical residual error estimator in terms of mean squared error. Moreover, the shrunken test-statistic decreases false positive rate when testing differences in brain contrast maps across a wide range of simulation studies. This methodology was also applied to experimental data regarding a cognitive activation task.
Resumo:
Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.