969 resultados para VIRULENCE
Resumo:
Keeping in view the serious health and environmental apprehensions associated with the use of pesticides, entomopathogenic symbiotic bacteria have the potential to supersede pesticides for the management of various pests. Lab experiments were conducted to test the toxicity of two bacteria Xenorhabdus bovienii and Photorhabdus luminescens at different bacterial concentrations against Galleria mellonella larvae and influence of different abiotic factors viz.: substrates, temperatures and moisture levels were ascertained on the efficacy of these bacteria. P. luminescens and X. bovienii caused the maximum mortality (99 and 90%, respectively) at a concentration of 4 x 107 cells/ml. Mortality caused by P. luminescens was significantly higher than that of X. bovienii. Highest mortality was observed on sand as compared to filter paper. A temperature of 30oC and a moisture level of 20 % were found optimum for the maximum mortality.
Resumo:
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Resumo:
Escherichia fergusonii has been associated with a wide variety of intestinal and extra-intestinal infections in both humans and animals but, despite strong circumstantial evidence, the degree to which the organism is responsible for the pathologies identified remains uncertain. Thirty isolates of E fergusonii collected between 2003 and 2004 were screened using an Escherichia coli virulence gene array to test for the presence of homologous virulence genes in E. fergusonii. The iss (increased serum survival) gene was present in 13/30 (43%) of the test strains and the prfB (P-related fimbriae regulatory) and ireA (siderophore receptor IreA) genes were also detected jointly in 3/30 (10%) strains. No known virulence genes were detected in 14/30 (47%) of strains. Following confirmatory PCR and sequence analysis, the E. fergusonii prfB, iss and ireA genes shared a high degree of sequence similarity to their counterparts in E. coli, and a particular resemblance was noted with the E. coli strain APEC O1 pathogenicity island. In tissue culture adherence assays, nine E. fergusonii isolates associated with HEp-2 cells with a 'localised adherence' or 'diffuse adherence' phenotype, and they proved to be moderately invasive. The E fergusonii isolates in this study possess both some phenotypic and genotypic features linked to known pathotypes of E coli, and support existing evidence that strains of E fergusonii may act as an opportunistic pathogens, although their specific virulence factors may need to be explored. Crown Copyright (c) 2008 Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: AcrA can function as the periplasmic adaptor protein (PAP) in several RND tripartite efflux pumps, of which AcrAB-TolC is considered the most important. This system confers innate multiple antibiotic resistance. Disruption of acrB or tolC impairs the ability of Salmonella Typhimurium to colonize and persist in the host. The aim of this study was to investigate the role of AcrA alone in multidrug resistance and pathogenicity. Methods: The acrA gene was inactivated in Salmonella Typhimurium SL1344 by insertion of the aph gene and this mutant complemented with pWKS30acrA. The antimicrobial susceptibility of the mutant to six antibiotics as well as various dyes and detergents was determined. In addition, efflux activity was quantified. The ability of the mutant to adhere to, and invade, tissue culture cells in vitro was measured. Results: Following disruption of acrA, RT-PCR and western blotting confirmed that acrB/AcrB was still expressed when acrA was disrupted. The acrA mutant was hypersusceptible to antibiotics, dyes and detergents. In some cases, lower MICs were seen than for the acrB or tolC mutants. Efflux of the fluorescent dye Hoechst H33342 was less than in wild-type following disruption of acrA. acrA was also required for adherence to, and invasion of, tissue culture cells. Conclusions: Inactivation of acrA conferred a phenotype distinct to that of acrB::aph and tolC::aph. These data indicate a role for AcrA distinct to that of other protein partners in both efflux of substrates and virulence.
Resumo:
Escherichia coli, the most common cause of bacteraemia in humans in the UK, can also cause serious diseases in animals. However the population structure, virulence and antimicrobial resistance genes of those from extraintestinal organs of livestock animals are poorly characterised. The aims of this study were to investigate the diversity of these isolates from livestock animals and to understand if there was any correlation between the virulence and antimicrobial resistance genes and the genetic backbone of the bacteria and if these isolates were similar to those isolated from humans. Here 39 E. coli isolates from liver (n=31), spleen (n=5) and blood (n=3) of cattle (n=34), sheep (n=3), chicken (n=1) and pig (n=1) were assigned to 19 serogroups with O8 being the most common (n=7), followed by O101, O20 (both n=3) and O153 (n=2). They belong to 29 multi-locus sequence types, 20 clonal complexes with ST23 (n=7), ST10 (n=6), ST117 and ST155 (both n=3) being most common and were distributed among phylogenetic group A (n=16), B1 (n=12), B2 (n=2) and D (n=9). The pattern of a subset of putative virulence genes was different in almost all isolates. No correlation between serogroups, animal hosts, MLST types, virulence and antimicrobial resistance genes was identified. The distributions of clonal complexes and virulence genes were similar to other extraintestinal or commensal E. coli from humans and other animals, suggesting a zoonotic potential. The diverse and various combinations of virulence genes implied that the infections were caused by different mechanisms and infection control will be challenging.
Resumo:
Aims: The aim of the study was to investigate how stresses like low pH, which may be encountered in farms or food preparation premises, shape populations of Salmonella enterica by the selection of stress-resistant variants. Methods and Results: Stationary-phase cultures of S. enterica serovar Enteritidis and serovar Typhimurium (one strain of each) were exposed to pH 2Æ5 for up to 4 h, followed by growth at pH 7 for 48 h. This process was repeated 15 times in two separate experiments, which increased the acid resistance of the three out of four populations we obtained, by three- to fourfold. Sustainable variants derived from the populations showed changes in colony morphology, expression of SEF17 fimbriae, growth, increased heat resistance and reduced virulence. Conclusions: The study demonstrates that low pH environments can select for populations of S. enterica with persistent phenotypic changes such as increased acid resistance and occasionally increased SEF17 expression and lower virulence. Significance and Impact of the Study: There is a common belief that increased acid resistance coincides with increased virulence. This study demonstrates for the first time that increased acid resistance often impairs virulence and affects the general phenotype of S. enterica.
Resumo:
A spontaneous high hydrostatic pressure (HHP)-tolerant mutant of Listeria monocytogenes ScottA, named AK01, was isolated previously. This mutant was immotile and showed increased resistance to heat, acid and H2O2 compared with the wild type (wt) (Karatzas, K.A.G. and Bennik, M.H.J. 2002 Appl Environ Microbiol 68: 3183–3189). In this study, we conclusively linked the increased HHP and stress tolerance of strain AK01 to a single codon deletion in ctsR (class three stress gene repressor) in a region encoding a highly conserved glycine repeat. CtsR negatively regulates the expression of the clp genes, including clpP, clpE and the clpC operon (encompassing ctsR itself), which belong to the class III heat shock genes. Allelic replacement of the ctsR gene in the wt background with the mutant ctsR gene, designated ctsRΔGly, rendered mutants with phenotypes and protein expression profiles identical to those of strain AK01. The expression levels of CtsR, ClpC and ClpP proteins were significantly higher in ctsRΔGly mutants than in the wt strain, indicative of the CtsRΔGly protein being inactive. Further evidence that the CtsRΔGly protein lacks its repressor function came from the finding that the Clp proteins in the mutant were not further induced upon heat shock, and that HHP tolerance of a ctsR deletion strain was as high as that of a ctsRΔGly mutant. The high HHP tolerance possibly results from the increased expression of the clp genes in the absence of (active) CtsR repressor. Importantly, the strains expressing CtsRΔGly show significantly attenuated virulence compared with the wt strain; however, no indication of disregulation of PrfA in the mutant strains was found. Our data highlight an important regulatory role of the glycine-rich region of CtsR in stress resistance and virulence.
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Three Salmonella enterica serovar Orion var. 15+ isolates of distinct provenance were tested for survival in various stress assays. All were less able to survive desiccation than a virulent S. Enreritidis strain, with levels of survival similar to a rpoS mutant of the S. Enteritidis strain, whereas one isolate (F3720) was significantly more acid tolerant. The S. Orion var. 15+ isolates were motile by flagellae and elaborated type-1 and curli-like fimbriae; surface organelles that are considered virulence determinants in Salmonella pathogenesis. Each adhered and invaded HEp-2 tissue culture cells with similar proficiency to the S. Enteritidis control but were significantly less virulent than S. En teritidis in the one-day-old and seven-day-old chick model. Given an oral dose of 1 x 10(3) cfu to one-day-old chicken, S. Orion var. 15+ isolates colonised 25% of liver and spleens examined at 24 h whereas S. Enteritidis colonised 100% of organs by the same with the same dose. Given an oral dose of 1 x 10(7) cfu at seven-day old, S. Orion var. 15+ failed to colonise livers and spleens in any bird examined at 24 h whereas S. Enteritidis colonised 50% of organs by the same with the same dose. Based on the number of internal organs colonised, one of the three S. Orion var. 15+ isolates tested (strain F3720) was significantly more invasive than the other two (B1 and B7). Also, strain F3720 was shed less than either B1 or B7 supporting the concept that there may be an inverse relationship between the ability to colonise deep tissues and to persist in the gut. These data are discussed in the light that S. Orion var. 15+ is associated with sporadic outbreaks of human infection rather than epidemics.
Resumo:
The virulence of a Salmonella enterica serovar Typhimurium DT014 strain in which marA was insertionally inactivated was compared to its isogenic parent in vitro and in vivo. In vitro, the numbers of the marA mutant phagocytosed by porcine lung macrophages were significantly increased, while survival at 24 h inside macrophages and adherence to human gut cells were significantly reduced in comparison with the parent strain. In vivo, the marA inactivated strain, in competition with its parent strain, persisted for a shorter period in chickens, was present in the caeca at significantly lower levels and invaded the deeper organs to a significantly lesser extent. Therapeutic antibiotic treatment of one group of chickens with oxytetracycline favoured the persistence of both the parent strain and, to a lesser extent, the marA inactivated strain; but interestingly, increased tetracycline resistance of Salmonella isolates after treatment of birds with antibiotic was seen only for the parent strain. Further work is needed to elucidate how mar is involved in virulence and if its inactivation can minimise the ability of bacteria to become antibiotic-resistant in vivo.
Resumo:
Attaching and effacing (AE) lesions were observed in the caecum, proximal colon and rectum of one of four lambs experimentally inoculated at 6 weeks. of age with Escherichia coli O157:H7. However, the attached bacteria did not immunostain with O157-specific antiserum. Subsequent bacteriological analysis of samples from this animal yielded two E. coli O115:H- strains, one from the colon (CO) and one from the rectum (RC), and those bacteria forming the AE lesions were shown to be of the O115 serogroup by immunostaining. The O115:H(-)isolates formed microcolonies and attaching and effacing lesions, as demonstrated by the fluorescence actin staining test, on HEp-2 tissue culture cells. Both isolates were confirmed by PCR to encode the epsilon (epsilon) subtype of intimin. Supernates of both O115:H- isolates induced cytopathic effects on Vero cell monolayers, and PCR analysis verified that both isolates encoded EAST1, CNF1 and CNF2 toxins but not Shiga-like toxins. Both isolates harboured similar sized plasmids but-PCR analysis indicated that only one of the O115:H- isolates (CO) possessed the plasmid-associated virulence determinants ehxA and etpD. Neither strain possessed the espP, katP or bfpA plasmid-associated virulence determinants. These E. coli O115:H- strains exhibited a novel combination of virulence determinants and are the first isolates found to possess both CNF1 and CNF2.
Resumo:
The current understanding of the pathogenesis of avian pathogenic Escherichia coli (APEC) in colisepticaemia is limited. This review discusses putative virulence determinants per se, such as a number of surface organelles including fimbriae and flagella; together with other factors such as iron sequestering mechanisms, which are involved in the survival of E. coli in the host rather than initiation of infection. It is concluded that avian colisepticaemia is a multi-factorial disease and that to date only a limited number of virulence factors of APEC have been thoroughly elucidated. Crown Copyright (C) 2002 Published by Elsevier Science Ltd. All rights reserved.