940 resultados para VIRAL REPLICATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) NS3-4A protease isnot only an essential component of the viral replication complexand a prime target for antiviral intervention but also a key playerin the persistence and pathogenesis of HCV. It cleaves andthereby inactivates two crucial adaptor proteins in viral RNAsensing and innate immunity (MAVS and TRIF) as well as aphosphatase involved in growth factor signaling (TC-PTP). Theaim of this ongoing study is to identify novel cellular targets ofthe NS3-4A protease.Methods: Cell lines inducibly expressing the NS3-4A proteasewere established using a tetracycline-regulated geneexpression system. Cells were analyzed in basal as well asinterferon-α-stimulated states. Two-dimensional difference gelelectrophoresis (2D-DIGE) and stable isotopic labeling usingamino acids in cell culture (SILAC) proteomics analysescoupled with mass spectrometry were employed to search forcellular substrates of NS3-4A.Results: A number of candidate cellular targets have beenidentified by these proteomics approaches. These are currentlybeing validated by different experimental techniques. In parallel,we are in the process of further defining the determinants forsubstrate specificity of the NS3-4A protease.Conclusions: The identification of novel cellular targets of theHCV NS3-4A protase should yield new insights into thepathogenesis of hepatitis C and may reveal novel targets forantiviral intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE: Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cytosine deaminase APOBEC3G, in the absence of the human immunodeficiency virus type 1 (HIV-1) accessory gene HIV-1 viral infectivity factor (vif), inhibits viral replication by introducing G-->A hypermutation in the newly synthesized HIV-1 DNA negative strand. We tested the hypothesis that genetic variants of APOBEC3G may modify HIV-1 transmission and disease progression. Single nucleotide polymorphisms were identified in the promoter region (three), introns (two), and exons (two). Genotypes were determined for 3,073 study participants enrolled in six HIV-AIDS prospective cohorts. One codon-changing variant, H186R in exon 4, was polymorphic in African Americans (AA) (f = 37%) and rare in European Americans (f < 3%) or Europeans (f = 5%). For AA, the variant allele 186R was strongly associated with decline in CD4 T cells (CD4 slope on square root scale: -1.86, P = 0.009), The 186R allele was also associated with accelerated progression to AIDS-defining conditions in AA. The in vitro antiviral activity of the 186R enzyme was not inferior to that of the common H186 variant. These studies suggest that there may be a modifying role of variants of APOBEC3G on HIV-1 disease progression that warrants further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé: Pratiquement tous les cancers du colon contiennent des mutations dans la voie de signalisation de Wnt qui active constitutivement cette voie. Cette activation mène à la stabilisation de la β-catenine. La β-catenin est transportée dans le noyau ou elle active des gènes cible en interagissant avec le facteur de transcription de TCF/LEF. Des adénovirus qui peuvent sélectivement se répliquer dans les cellules tumorales sont les agents qui peuvent permettre la déstruction de la tumeur mais pas le tissu normal. In vitro, les adénovirus avec des sites d'attachement du facteur de transcription TCF dans les promoteurs de l'adénovirus montrent une sélectivité et une activité dans une large sélection de lignées cellulaires de cancer du colon. Au contraire, in vivo, quand les adénovirus modifiés sont injectés dans la circulation, ils sont moins efficaces à cause de leur fixation par le foie et à cause de l'absence d'expression du récepteur du Coxsackie-Adénovirus (CAR). Le but de ma thèse était de modifier la protéine principale de capside de l'adénovirus, fibre, pour augmenter l'infection des tumeurs du cancer du colon. La fibre de l'adénovirus est responsable de l'attachement aux cellules et de l'entrée virale. J'ai inséré un peptide RGD dans la boucle HI de la fibre qui dirige sélectivement le virus aux récepteurs des integrines. Les integrines sont surexprimées par les cellules du cancer du colon et l'endothélium des vesseaux de la tumeur. Le virus re-ciblé, vKH6, a montré une activité accrue dans toutes les lignées cellulaires de cancer du colon, tandis que la sélectivité était maintenue. In vivo, vKH6 était supérieur au virus avec une capside de type sauvage en retardant la croissance de la tumeur. Le virus s'est répliqué plus vite et dispersé graduellement dans la tumeur. Cet effet a été montré par hybridation in situ et par PCR quantitative. Cependant, la monothérapie avec le virus n'a pu retarder la croissance des cellules tumorales SW620 greffées que de 2 semaines, mais à cause des régions non infectées la tumeur n'a pas pu être éliminée. Bien que la combinaison avec les chimiothérapies conventionnelles soit d'intérêt potentiel, presque toutes interfèrent avec la réplication virale. Les drogues antiangiogéniques sont des agents anti-tumoraux efficaces et prometteurs. Ces drogues n'interfèrent pas avec le cycle de vie de l'adénovirus. RAD001 est un dérivé de la rapamycine et il inhibe mTOR, une protéine kinase de la voie de PI3K. RAD001 empêche la croissance des cellules et il a aussi des effets anti-angiogénique et immunosuppressifs. RAD001 in vitro n'affecte pas l'expression des gènes viraux et la production virale. La combinaison de VKH6 et RAD001 in vivo a un effet additif en retardant la croissance de la tumeur. Des nouveaux peptides plus efficaces dans le ciblage de l'adénovirus sont nécessaires pour augmenter l'infection des tumeurs. J'ai créé un système de recombinaison qui permettra la sélection de nouveaux peptides dans le contexte du génome de l'adénovirus. Summary Virtually all colon cancers have mutations in the Wnt signalling pathway which result in the constitutive activation of the pathway. This activation leads to stabilization of β-catenin. β-catenin enters the nucleus and activates its target genes through interaction with the TCF transcription factor. Selectively replicating adenoviruses are promising novel agents that can destroy the tumour but not the surrounding normal tissue. In vitro, adenoviruses with TCF binding sites in the early viral promoters show selectivity and activity in a broad panel of viruses but in vivo they are less effective due to the lack of expression of the Coxsackie-Adenovirus receptor (CAR). The aim of my thesis was to modify the major capsid protein of the adenovirus, fibre, to increase the infection of colon tumours. Fibre of adenovirus is responsible for the binding to cells and for the viral uptake. I inserted an RGD binding peptide into the HI loop of fibre that selectively targets the virus to integrins that are overexpressed on tumour cells and on tumour endothelium. The retargeted virus, vKH6, showed increased activity in all colon cancer cell lines while selectivity was maintained. In vivo, vKH6 is superior to a matched virus with a wild type capsid in delaying tumour growth. vKH6 replicates and gradually spreads within the tumour as shown by in situ hybridization and Q-PCR. The virus alone can delay the growth of SW620 xenografts by 2 weeks but due to uninfected tumour regions the tumour cannot be cured. Although combination with conventional chemotherapeutics is of potential interest, almost all of them interfere with the viral replication. Growing evidence supports that anti-angiogenic drugs are effective and promising anti-tumour agents. These drugs interfere less with the viral life cycle. RAD001 is a rapamycin derivative and it blocks mTOR, a protein kinase in the PI3K pathway. RAD001 inhibits cell growth and has strong anti-angiogenic and immunosuppressive effects. RAD001 in vitro does not affect viral gene expression and viral burst size. In vivo vKH6 and RAD001 have an additive effect in delaying tumour growth, but tumour growth is still not completely inhibited. To further increase tumour infection new tumour specific targeting peptides are needed. I created an adenovirus display library that will allow the selection of targeting peptides. This system may also facilitate the production of fibre modified viruses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arenaviruses are important emerging human pathogens maintained by noncytolytic persistent infection in their rodent reservoir hosts. Despite high levels of viral replication, persistently infected carrier hosts show only mildly elevated levels of type I interferon (IFN-I). Accordingly, the arenavirus nucleoprotein (NP) has been identified as a potent IFN-I antagonist capable of blocking activation of interferon regulatory factor 3 (IRF3) via the retinoic acid inducible gene (RIG)-I/mitochondrial antiviral signaling (MAVS) pathway. Another important mechanism of host innate antiviral defense is represented by virus-induced mitochondrial apoptosis via RIG-I/MAVS and IRF3. In the present study, we investigated the ability of the prototypic Old World arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with RIG-I/MAVS-dependent apoptosis. We found that LCMV does not induce apoptosis at any time during infection. While LCMV efficiently blocked induction of IFN-I via RIG-I/MAVS in response to superinfection with cytopathic RNA viruses, virus-induced mitochondrial apoptosis remained fully active in LCMV-infected cells. Notably, in LCMV-infected cells, RIG-I was dispensable for virus-induced apoptosis via MAVS. Our study reveals that LCMV infection efficiently suppresses induction of IFN-I but does not interfere with the cell's ability to undergo virus-induced mitochondrial apoptosis as a strategy of innate antiviral defense. The RIG-I independence of mitochondrial apoptosis in LCMV-infected cells provides the first evidence that arenaviruses can reshape apoptotic signaling according to their needs. IMPORTANCE: Arenaviruses are important emerging human pathogens that are maintained in their rodent hosts by persistent infection. Persistent virus is able to subvert the cellular interferon response, a powerful branch of the innate antiviral defense. Here, we investigated the ability of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to interfere with the induction of programmed cell death, or apoptosis, in response to superinfection with cytopathic RNA viruses. Upon viral challenge, persistent LCMV efficiently blocked induction of interferons, whereas virus-induced apoptosis remained fully active in LCMV-infected cells. Our studies reveal that the persistent virus is able to reshape innate apoptotic signaling in order to prevent interferon production while maintaining programmed cell death as a strategy for innate defense. The differential effect of persistent virus on the interferon response versus its effect on apoptosis appears as a subtle strategy to guarantee sufficiently high viral loads for efficient transmission while maintaining apoptosis as a mechanism of defense.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. RESULTS: Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. CONCLUSIONS: A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring of cytomegalovirus cell-mediated immunity is a promising tool for the refinement of preventative and therapeutic strategies posttransplantation. Typically, the interferon-γ response to T cell stimulation is measured. We evaluated a broad range of cytokine and chemokines to better characterize the ex vivo host-response to CMV peptide stimulation. In a cohort of CMV viremic organ transplant recipients, chemokine expression-specifically CCL8 (AUC 0.849 95% CI 0.721-0.978; p = 0.003) and CXCL10 (AUC 0.841, 95% CI 0.707-0.974; p = 0.004)-was associated with control of viral replication. In a second cohort of transplant recipients at high-risk for CMV, the presence of a polymorphism in the CCL8 promoter conferred an increased risk of viral replication after discontinuation of antiviral prophylaxis (logrank hazard ratio 3.6; 95% CI 2.077-51.88). Using cell-sorting experiments, we determined that the primary cell type producing CCL8 in response to CMV peptide stimulation was the monocyte fraction. Finally, in vitro experiments using standard immunosuppressive agents demonstrated a dose-dependent reduction in CCL8 production. Chemokines appear to be important elements of the cell-mediated response to CMV infection posttransplant, as here suggested for CCL8, and translation of this knowledge may allow for the tailoring and improvement of preventative strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background HIV-1 infection increases plasma levels of inflammatory markers. Combination antiretroviral therapy (cART) does not restore inflammatory markers to normal levels. Since intensification of cART with raltegravir reduced CD8 T-cell activation in the Discor-Ral and IntegRal studies, we have evaluated the effect of raltegravir intensification on several soluble inflammation markers in these studies. Methods Longitudinal plasma samples (0–48 weeks) from the IntegRal (n = 67, 22 control and 45 intensified individuals) and the Discor-Ral studies (44 individuals with CD4 T-cell counts<350 cells/µl, 14 control and 30 intensified) were assayed for 25 markers. Mann-Whitney, Wilcoxon, Spearman test and linear mixed models were used for analysis. Results At baseline, different inflammatory markers were strongly associated with HCV co-infection, lower CD4 counts and with cART regimens (being higher in PI-treated individuals), but poorly correlated with detection of markers of residual viral replication. Although raltegravir intensification reduced inflammation in individuals with lower CD4 T-cell counts, no effect of intensification was observed on plasma markers of inflammation in a global analysis. An association was found, however, between reductions in immune activation and plasma levels of the coagulation marker D-dimer, which exclusively decreased in intensified patients on protease inhibitor (PI)-based cART regimens (P = 0.040). Conclusions The inflammatory profile in treated HIV-infected individuals showed a complex association with HCV co-infection, the levels of CD4 T cells and the cART regimen. Raltegravir intensification specifically reduced D-dimer levels in PI-treated patients, highlighting the link between cART composition and residual viral replication; however, raltegravir had little effect on other inflammatory markers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fatal Human herpesvirus 1 (HHV-1) was diagnosed in 12 captive marmosets (Callithrix jacchus and Callithrix penicillata) from metropolitan region of São Paulo, São Paulo State. Clinical signs were variable among the cases, but most affected marmosets presented signs associated with viral epithelial replication: oral, lingual and facial skin ulcers and hypersalivation, and viral replication in the central nervous system: prostration, seizure and aggressive behavior. Consistent microscopic findings were diffuse mild to severe nonsuppurative necrotizing meningoencephalitis with gliosis, vasculitis and neuronal necrosis. Additionally, in the brain, oral cavity, skin, adrenal gland and myoenteric plexus intranuclear inclusion bodies were present. Immunohistochemistry confirmed the presence of the HHV-1 antigen in association with lesions in the brain, oral and lingual mucosa, facial skin, adrenal gland and myoenteric plexus. HHV-1-specific polymerase chain reaction (PCR) analysis of the brain was carried out and the virus was detected in 7/8 infected marmosets. It is concluded that HHV-1 causes widespread fatal infection in marmosets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relative ease to concentrate and purify adenoviruses, their well characterized mid-sized genome, and the ability to delete non-essential regions from their genome to accommodate foreign gene, made adenoviruses a suitable candidate for the construction of vectors. The use of adenoviral vectors in gene therapy, vaccination, and as a general vector system for expressing foreign genes have been documented for some time. In this study, the objective was to rescue a BAV3 E1 or E3 recombinant vector carrying the kanamycin resistant gene, a dominant selectable marker with useful applications in studying vectored gene expression in mammalian cells. To accomplish the objective of this study, more information about BAV3 DNA sequences was required in order to make the manipulation of the virus genome accessible. Therefore, sequencing of the BAV3 genome from 1 1 .7% to 30.8% was carried out. Analysis of the determined sequences revealed the primary structure of important viral gene products coded by E2 including BAV3 DNA pol and precursor to terminal protein. Comparative analysis of these proteins with their counterparts from human and non human adenoviruses revealed important insights as to the evolutionary lineage of BAV3. In order to insert the kanamycin resistance gene in either E1 or E3, it was necessary to delete BAV3 sequences to accommodate the foreign gene so as not to exceed the limit of the packaging capacity of the virus. To construct a recombinant BAV3 in which a foreign gene was inserted in the deleted E1 region, an E1 shuttle vector was constructed. This involved the deletion from the viral sequences a region between 1.3% to 9% and inserting the kanamycin resistance gene to replace the deletion. The E1 shuttle vector contained the left (0%- 53.9%) segment of the genome and was expected to generate BAV3 recombinants that can be grown and propagated in cells that can complement the missing E1 functions. To construct a similar shuttle vector for E3 deletion, DNA sequences extending from 78.9% to 82.5% (1281 bp) were deleted from within the E3 region that had been cloned into a plasmid vector. The deleted region corresponds to those that have been shown to be non-essential for viral replication in cell culture. The resulting plasmid was used to construct another recombinant plasmid with BAV3 DNA sequences extending from 37.1% to 100% and with a deletion of E3 sequences that were replaced by kanamycin resistance gene. This shuttle plasmid was used in cotransfections with digested viral DNA in an attempt to rescue a recombinant BAV3 carrying the kanamycin resistance gene to replace the deleted E3. In spite of repeated attempts of transfection, El or E3 recombinant BAV3 were not isolated. It seems that other approaches should be applied to make a final conclusion on BAV3 infectivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenoviruses are nonenveloped icosahedral shaped particles. The double stranded DNA viral genome is divided into 5 major early transcription units, designated E1 A, E1 B, and E2 to E4, which are expressed in a regulated manner soon after infection. The gene products of the early region 3 (E3), shown to be nonessential for viral replication in vitro, are believed to be involved in counteracting host immunosurveillance. In order to sequence the E3 region of Bovine adenovirus type 2 (BAV2) it was necessary to determine the restriction map for the plasmid pEA48. A physical restriction endonuclease map for BamHl, Clal, Eco RI, Hindlll, Kpnl, Pstt, Sail, and Xbal was constructed. The DNA insert in pEA48 was determined to be viral in origin using Southern hybridization. A human adenovirus type 5 recombinant plasmid, containing partial DNA fragments of the two transcription units L4 and L5 that lie just outside the E3, was used to localize this region. The recombinant plasmid pEA was subcloned to facilitate sequencing. The DNA sequences between 74.8 and 90.5 map units containing the E3, the hexon associated protein (pVIII), and the fibre gene were determined. Homology comparison revealed that the genes for the hexon associated pV11I and the fibre protein are conserved. The last 70 amino acids of the BAV2 pV11I were the most conserved, showing a similarity of 87 percent with Ad2 pV1I1. A comparison between the predicted amino acid sequences of BAV2 and Ad40, Ad41 , Ad2 and AdS, revealed that they have an identical secondary structure consisting of a tail, a shaft and a knob. The shaft is composed of 22, 15 amino acid motifs, with periodic glycines and hydrophobic residues. The E3 region was found to consist of about 2.3 Kbp and to encode four proteins that were greater than 60 amino acids. However, these four open reading frames did not show significant homology to any other known adenovirus DNA or protein sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinant Adenoviruses (Ads) have been shown to have potential applications in three areas: gene therapy, high level protein expression and recombinant vaccines.' At least three different locations within the Ad genome can be deleted and subsequently used for the insertion of foreign sequences. These include the Early 3 (E3), Early 1 (E1) and Early 4 (E4) regions. Viral vectors of this type have been well studied in Human Ads 2 and 5, however one has not yet been constructed for Bovine Adenovirus Type 2 (BAV2). The E3 region is located between 76.6 and 86 m.u. on the r-strand and is transcribed in a rightward direction. The gene products of the Early 3 region (E3) have been shown to be non-essential for viral replication, in vitro, but are required for host immunosurveillance. This study represents the cloning and reconstitution of a BAV2 E3 deletion mutant. A deletion of 1800bp was made within the E3 region of BAV2 and the thymidine kinase gene was subsequently inserted in the deleted area . . The plasmid pdlE3-4tk1 (23.4Kbp) was constructed and used to to facilitate homologous recombination with the wild type BAV2 to produce a mutant. Southern Blotting and Hybridization results suggest the presence of a BAV2 E3 deletion mutant with thymidine kinase sequences present. The E4 region of Human Adenovirus types 2 and 5 is located at the extreme right end of the genome (91.3 map units - 99.1 map units) and is transcribed in a leftward direction giving rise to a complicated set of differentially spliced mRNAs. Essentially there are 7 open reading frames (ORFs) encoding for at least 7 polypeptides. The gene products encoded by the E4 region have been shown to be essential for the expression of late viral genes, host cell shutoff and normal viral growth. We have cloned and sequenced the right end segment between 90.5 map units and 100 map units of the BAV2 genome. The results show several open reading frames which encode polypeptides exhibiting homology to three polypeptides encoded by the E4 region of human adenovirus type 2. These include the 14kDa protein encoded by ORF1, the 34kDa protein encoded by ORF6 and the 13kDa protein encoded by ORF3. The nucleotide sequence, restriction enzyme map, and ORF map of the E4 region could be very useful in future molecular manipulation of this region and could possibly explain the slow growth rate of BAV2 in MDBK cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adenoviruses are the most commonly used in the development of oncolytic therapy. Oncolytic adenoviruses are genetically modified to selectivity replicate in and kill tumor cells. The p53 molecule is a tumor suppressor protein that responds to viral infection through the activation of apoptosis, which is inhibited by adenovirus E1B55kDa protein leading to progressive viral lytic cycle. The non-specificity of replication has limited the use of wild type adenovirus in cancer therapy. This issue was resolved by using an E1b deleted Ad that can only replicate in cells with a deficiency in the p53 protein, a common feature of most cancer cells. Although demonstrating a moderate success rate, E1b55kDa deleted Ad has not been approved as a standard therapy for all cancer types. Several studies have revealed that E1b deleted Ad replication was independent of p53 status in the cell, as the virus replicated better in some p53 deficient cancers more than others. However, this mechanism has not been investigated deeply. Therefore, the objective of this study is to understand the relationship between p53 status, levels and functional activity, and oncolytic Ad5dlE1b55kDa replication efficiency. Firstly, five transient p53 expression vectors that contain different regulatory elements were engineered and then evaluated in H1299, HEK293 and HeLa cell lines. Data indicated that vector that contains the MARs and HPRE regulatory elements achieved the highest stability of p53 expression. Secondly, we used these vectors to examine the effect of various p53 expression levels on the replication efficiency of oncolytic Ad5dlE1b55kDa. We found that the level of p53 in the cell had an insignificant effect on the oncolytic viruses’ replication. However, the functional activity of p53 had a significant effect on its replication, as Ad5dlE1b55kDa was shown to have selective activity in H1299 cells (p53-null). In contrast, a decrease in viral replication was found in HeLa cells (p53-positive). Finally, the effect of p53’s functional activity on the replication efficiency of oncolytic Ad5dlE1b55kDa was examined. Viral growth was evaluated in H1299 cells expressing number of p53 mutants. P53-R175H mutant successfully rescued viral growth by allowing the virus to exert its mechanism of selectivity. The mechanism entailed deregulating the expression of specific genes, cell cycle and apoptosis, in the p53 pathway to promote its production leading to efficient oncolytic effect. These results confirmed that oncolytic Ad5dlE1b55kDa sensitivity is mutation-type specific. Therefore, before it is applied clinically as cancer therapy for p53 deficient tumors, the type of p53 mutation must be determined for efficient antitumor effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Affiliation: Département de microbiologie et immunologie, Faculté de médecine, Université de Montréal