958 resultados para University of Cambridge.
Resumo:
Mode of access: Internet.
Resumo:
"Appendix, containing a selection of college examination papers": v. 2, p. [649]-714.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Signed: F. G. Plaistowe.
Resumo:
Mode of access: Internet.
Resumo:
In some Queensland universities, Information Systems academics have moved out of Business Faculties. This study uses a pilot SWOT analysis to examine the ramifications of Information Systems academics being located within or outside of the Business Faculty. The analysis provides a useful basis for decision makers in the School studied, to exploit opportunities and minimise external threats. For Information Systems academics contemplating administrative relocation of their group, the study also offers useful insights. The study presages a series of further SWOT analyses to provide a range of perspectives on the relative merits of having Information Systems academics administratively located inside versus outside Business faculties.
Resumo:
John Frazer's architectural work is inspired by living and generative processes. Both evolutionary and revolutionary, it explores informatin ecologies and the dynamics of the spaces between objects. Fuelled by an interest in the cybernetic work of Gordon Pask and Norbert Wiener, and the possibilities of the computer and the "new science" it has facilitated, Frazer and his team of collaborators have conducted a series of experiments that utilize genetic algorithms, cellular automata, emergent behaviour, complexity and feedback loops to create a truly dynamic architecture. Frazer studied at the Architectural Association (AA) in London from 1963 to 1969, and later became unit master of Diploma Unit 11 there. He was subsequently Director of Computer-Aided Design at the University of Ulter - a post he held while writing An Evolutionary Architecture in 1995 - and a lecturer at the University of Cambridge. In 1983 he co-founded Autographics Software Ltd, which pioneered microprocessor graphics. Frazer was awarded a person chair at the University of Ulster in 1984. In Frazer's hands, architecture becomes machine-readable, formally open-ended and responsive. His work as computer consultant to Cedric Price's Generator Project of 1976 (see P84)led to the development of a series of tools and processes; these have resulted in projects such as the Calbuild Kit (1985) and the Universal Constructor (1990). These subsequent computer-orientated architectural machines are makers of architectural form beyond the full control of the architect-programmer. Frazer makes much reference to the multi-celled relationships found in nature, and their ongoing morphosis in response to continually changing contextual criteria. He defines the elements that describe his evolutionary architectural model thus: "A genetic code script, rules for the development of the code, mapping of the code to a virtual model, the nature of the environment for the development of the model and, most importantly, the criteria for selection. In setting out these parameters for designing evolutionary architectures, Frazer goes beyond the usual notions of architectural beauty and aesthetics. Nevertheless his work is not without an aesthetic: some pieces are a frenzy of mad wire, while others have a modularity that is reminiscent of biological form. Algorithms form the basis of Frazer's designs. These algorithms determine a variety of formal results dependent on the nature of the information they are given. His work, therefore, is always dynamic, always evolving and always different. Designing with algorithms is also critical to other architects featured in this book, such as Marcos Novak (see p150). Frazer has made an unparalleled contribution to defining architectural possibilities for the twenty-first century, and remains an inspiration to architects seeking to create responsive environments. Architects were initially slow to pick up on the opportunities that the computer provides. These opportunities are both representational and spatial: computers can help architects draw buildings and, more importantly, they can help architects create varied spaces, both virtual and actual. Frazer's work was groundbreaking in this respect, and well before its time.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
Report provided back by Bronwyn Fredericks on her participation at the First Native American and Indigenous Studies Association Meeting held 21-23 May 2009 in Minnesota, United States of America.
Resumo:
Communities of practice (CoPs) may be defined as groups of people who are mutually bound by what they do together (Wenger, 1998, p. 2), that is, they “form to share what they know, to learn from one another regarding some aspects of their work and to provide a social context for that work” (Nickols, 2000, para. 1). They are “emergent” in that the shape and membership emerges in the process of activity (Lees, 2005, p. 7). People in CoPs share their knowledge and experiences freely with the purpose of finding inventive ways to approach new problems (Wenger & Snyder, 2000, p. 2). They can be seen as “shared histories of learning” (Wenger, 1998, p. 86). For some time, QUT staff have been involved in a number of initiatives aimed at sharing ideas and resources for teaching first year students such as the Coordinators of Large First Year Units Working Party. To harness these initiatives and maximise their influence, the leaders of the Transitions In Project (TIP)1 decided to form a CoP around the design, assessment and management of large first year units.
Resumo:
This presentation describes a situation where an open access mandate was developed and implemented at an institutional level, in this case, an Australian University. Some conclusions are drawn about its effect over a five year period of implementation.