843 resultados para Uniaxial compressive strength
Resumo:
This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.
Resumo:
The use of rubber aggregates, steel and textile fibres recycled from tires in concrete is a solution that it is being studied by several authors around the world. A few works have been carried out at room temperature but very scarce at high temperatures. This paper presents the results of a research with the aim to evaluate the behaviour at high temperatures of a concrete made with different amounts of recycled textile and steel fibres from tires. The study considered five concrete compositions, with the same water/cement ratio (W/C=0.43), differing only in the type and quantity of fibers incorporated in the mixture. Thus, a reference composition (0% fiber), two compositions with 30 and 70kg/m3 of steel fibers and a composition with 2 and 4kg/m3 of textile fibers from tires were tested. The concrete was tested for a load level of 0.5fcd and different maximum temperature levels (20, 300, 500 and 700ºC).
Resumo:
"Report of the United States Bureau of Mines to the Pennsylvania State Anthracite Mine Cave Commission and review of the compressive strength of anthracite, bituminous coals and mine supports."
Resumo:
Performance prediction models for partial face mechanical excavators, when developed in laboratory conditions, depend on relating the results of a set of rock property tests and indices to specific cutting energy (SE) for various rock types. There exist some studies in the literature aiming to correlate the geotechnical properties of intact rocks with the SE, especially for massive and widely jointed rock environments. However, those including direct and/or indirect measures of rock fracture parameters such as rock brittleness and fracture toughness, along with the other rock parameters expressing different aspects of rock behavior under drag tools (picks), are rather limited. With this study, it was aimed to investigate the relationships between the indirect measures of rock brittleness and fracture toughness and the SE depending on the results of a new and two previous linear rock cutting programmes. Relationships between the SE, rock strength parameters, and the rock index tests have also been investigated in this study. Sandstone samples taken from the different fields around Ankara, Turkey were used in the new testing programme. Detailed mineralogical analyses, petrographic studies, and rock mechanics and rock cutting tests were performed on these selected sandstone specimens. The assessment of rock cuttability was based on the SE. Three different brittleness indices (B1, B2, and B4) were calculated for sandstones samples, whereas a toughness index (T-i), being developed by Atkinson et al.(1), was employed to represent the indirect rock fracture toughness. The relationships between the SE and the large amounts of new data obtained from the mineralogical analyses, petrographic studies, rock mechanics, and linear rock cutting tests were evaluated by using bivariate correlation and curve fitting techniques, variance analysis, and Student's t-test. Rock cutting and rock property testing data that came from well-known studies of McFeat-Smith and Fowell(2) and Roxborough and Philips(3) have also been employed in statistical analyses together with the new data. Laboratory tests and subsequent analyses revealed that there were close correlations between the SE and B4 whereas no statistically significant correlation has been found between the SE and T-i. Uniaxial compressive and Brazilian tensile strengths and Shore scleroscope hardness of sandstones also exhibited strong relationships with the SE. NCB cone indenter test had the greatest influence on the SE among the other engineering properties of rocks, confirming the previous studies in rock cutting and mechanical excavation. Therefore, it was recommended to employ easy-to-use index tests of NCB cone indenter and Shore scleroscope in the estimation of laboratory SE of sandstones ranging from very low to high strengths in the absence of a rock cutting rig to measure it until the easy-to-use universal measures of the rock brittleness and especially the rock fracture toughness, being an intrinsic rock property, are developed.
Resumo:
Brushite cements differ from apatite-forming compositions by consuming a lot of water in their setting reaction whereas apatite-forming cements consume little or no water at all. Only such cement systems that consume water during setting can theoretically produce near-zero porosity ceramics. This study aimed to produce such a brushite ceramic and investigated whether near elimination of porosity would prevent a burst release profile of incorporated antibiotics that is common to prior calcium phosphate cement delivery matrices. Through adjustment of the powder technological properties of the powder reactants, that is particle size and particle size distribution, and by adjusting citric acid concentration of the liquid phase to 800 mM, a relative porosity of as low as 11% of the brushite cement matrix could be achieved (a 60% reduction compared to previous studies), resulting in a wet unprecompacted compressive strength of 52 MPa (representing a more than 100% increase to previously reported results) with a workable setting time of 4.5 min of the cement paste. Up to 2 wt.% of vancomycin and ciprofloxacin could be incorporated into the cement system without loss of wet compressive strength. It was found that drug release rates could be controlled by the adjustable relative porosity of the cement system and burst release could be minimized and an almost linear release achieved, but the solubility of the antibiotic (vancomycin > ciprofloxacin) appeared also to be a crucial factor.
Resumo:
This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .
Resumo:
Crack initiation was studied for asphalt mixtures under external compressive loads. High tensile localized stresses e direction of the external loads. A quantitative crack initiation criterion the edges of compressed air voids lead to the growth of wing cracks in thon was derived using pseudostrain energy balance principle. Bond energy is determined and it increases with aging and loading rate while decreases with temperature. Cohesive and adhesive cracking occur simultaneously and a method was proposed to determine the individual percentage. The crack initiation criterion is simplified and validated through comparing the predicted and measured compressive strength of the asphalt mixtures.
Resumo:
Use of higher proportions of fly ash as a cement replacement in concrete has obvious environmental and performance benefits but high volumes of fly ash are not commonly used due to perceived lower early age strengths. In this investigation, addition of cement kiln dust (CKD) and gypsum to activate the fly ash was studied and the proportions used in the paste mixes were designed to optimize the mixture ingredients to achieve the highest early age compressive strength. Change of mineral phase composition and micro structure of the composites was analyzed. It was found that CKD was much more effective in activating the fly ash than gypsum. Appreciable early age compressive strengths were achieved for fly ash contents up to 60% of the binder and these observations were supported by analysis of the mineral phases.
Resumo:
It is possible to synthesize environmentally friendly cementitious construction materials from alkali-activated natural pozzolans. The effect of the alkaline medium on the strength of alkali-activated natural pozzolans has been investigated and characterised. This paper highlights the effect of the type and form of the alkaline activator, the dosage of alkali and the SiO2/Na2O ratio (silica modulus, Ms) when using water–glass solutions and different curing conditions on the geopolymerisation of natural pozzolans. Activation of natural and calcined pozzolan for production of geopolymeric binder was verified by using Taftan andesite and Shahindej dacite from Iran as a solid precursor. The optimum range for each factor is suggested based on the different effects they have on compressive strength. The concentration of dissolving silicon, aluminium and calcium in alkaline solution, the formation of gel phase and the factors affecting this have been studied by using leaching tests, ICP–AES, and FTIR.
Resumo:
Natural pozzolans can be activated and condensed with sodium silicate in an alkaline environment to synthesize high performance cementitious construction materials with low environmental impact. The nature of the starting materials including mineral composition, chemical composition and crystal structure groups affects the formation of the geopolymer gel phase. In this paper, the pozzolanic activities of five natural pozzolans are studied. From XRD and XRF results, most of the raw materials contain zeolite clay minerals and have a high loss on ignition. Therefore, before use, samples were calcined at 700, 800 and 900 °C, respectively. The improvement in pozzolanic properties was studied following heat treatment including calcinations and/or elevated curing temperature by using alkali solubility and compressive strength tests. The results show that pozzolan containing sodium zeolite clinoptilolite can be used to prepare a moderate to high strength binder by heat treatment and calcinations can impart disorder hornblende as a constituent of pozzolan with no amorphous phase to prepare a moderate strength binder.
Resumo:
In order to predict compressive strength of geopolymers prepared from alumina-silica natural products, based on the effect of Al 2 O 3 /SiO 2, Na 2 O/Al 2 O 3, Na 2 O/H 2 O, and Na/[Na+K], more than 50 pieces of data were gathered from the literature. The data was utilized to train and test a multilayer artificial neural network (ANN). Therefore a multilayer feedforward network was designed with chemical compositions of alumina silicate and alkali activators as inputs and compressive strength as output. In this study, a feedforward network with various numbers of hidden layers and neurons were tested to select the optimum network architecture. The developed three-layer neural network simulator model used the feedforward back propagation architecture, demonstrated its ability in training the given input/output patterns. The cross-validation data was used to show the validity and high prediction accuracy of the network. This leads to the optimum chemical composition and the best paste can be made from activated alumina-silica natural products using alkaline hydroxide, and alkaline silicate. The research results are in agreement with mechanism of geopolymerization.
Read More: http://ascelibrary.org/doi/abs/10.1061/(ASCE)MT.1943-5533.0000829
Resumo:
The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts
Resumo:
Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.