902 resultados para Unconstrained minimization
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
A comparison between an unconstrained and a partially constrained system for in vitro biomechanical testing of the L5-S1 spinal unit was conducted. The objective was to compare the compliance and the coupling of the L5-S1 unit measured with an unconstrained and a partially constrained test for the three major physiological motions of the human spine. Very few studies have compared unconstrained and partially constrained testing systems using the same cadaveric functional spinal units (FSUs). Seven human L5-S1 units were therefore tested on both a pneumatic, unconstrained, and a servohydraulic, partially constrained system. Each FSU was tested along three motions: flexion-extension (FE), lateral bending (LB) and axial rotation (AR). The obtained kinematics on both systems is not equivalent, except for the FE case, where both motions are similar. The directions of coupled motions were similar for both tests, but their magnitudes were smaller in the partially constrained configuration. The use of a partially constrained system to characterize LB and AR of the lumbosacral FSU decreased significantly the measured stiffness of the segment. The unconstrained system is today's "gold standard" for the characterization of FSUs. The selected partially constrained method seems also to be an appropriate way to characterize FSUs for specific applications. Care should be taken using the latter method when the coupled motions are important.
Resumo:
Intra-session network coding has been shown to offer significant gains in terms of achievable throughput and delay in settings where one source multicasts data to several clients. In this paper, we consider a more general scenario where multiple sources transmit data to sets of clients over a wireline overlay network. We propose a novel framework for efficient rate allocation in networks where intermediate network nodes have the opportunity to combine packets from different sources using randomized network coding. We formulate the problem as the minimization of the average decoding delay in the client population and solve it with a gradient-based stochastic algorithm. Our optimized inter-session network coding solution is evaluated in different network topologies and is compared with basic intra-session network coding solutions. Our results show the benefits of proper coding decisions and effective rate allocation for lowering the decoding delay when the network is used by concurrent multicast sessions.
Resumo:
This study compares the procurement cost-minimizing and productive efficiency performance of the auction mechanism used by independent system operators (ISOs) in wholesale electricity auction markets in the U.S. with that of a proposed alternative. The current practice allocates energy contracts as if the auction featured a discriminatory final payment method when, in fact, the markets are uniform price auctions. The proposed alternative explicitly accounts for the market clearing price during the allocation phase. We find that the proposed alternative largely outperforms the current practice on the basis of procurement costs in the context of simple auction markets featuring both day-ahead and real-time auctions and that the procurement cost advantage of the alternative is complete when we simulate the effects of increased competition. We also find that a trade-off between the objectives of procurement cost minimization and productive efficiency emerges in our simple auction markets and persists in the face of increased competition.
Resumo:
A Payment Cost Minimization (PCM) auction has been proposed as an alternative to the Offer Cost Minimization (OCM) auction to be used in wholesale electric power markets with the intention to lower the procurement cost of electricity. Efficiency concerns about this proposal have relied on the assumption of true production cost revelation. Using an experimental approach, I compare the two auctions, strictly controlling for the level of unilateral market power. A specific feature of these complex-offer auctions is that the sellers submit not only the quantities and the minimum prices at which they are willing to sell, but also the start-up fees that are designed to reimburse the fixed start-up costs of the generation plants. I find that both auctions result in start-up fees that are significantly higher than the start-up costs. Overall, the two auctions perform similarly in terms of procurement cost and efficiency. Surprisingly, I do not find a substantial difference between less market power and more market power designs. Both designs result in similar inefficiencies and equally higher procurement costs over the competitive prediction. The PCM auction tends to have lower price volatility than the OCM auction when the market power is minimal but this property vanishes in the designs with market power. These findings lead me to conclude that both the PCM and the OCM auctions do not belong to the class of truth revealing mechanisms and do not easily elicit competitive behavior.
Resumo:
A problem with a practical application of Varian.s Weak Axiom of Cost Minimization is that an observed violation may be due to random variation in the output quantities produced by firms rather than due to inefficiency on the part of the firm. In this paper, unlike in Varian (1985), the output rather than the input quantities are treated as random and an alternative statistical test of the violation of WACM is proposed. We assume that there is no technical inefficiency and provide a test of the hypothesis that an observed violation of WACM is merely due to random variations in the output levels of the firms being compared.. We suggest an intuitive approach for specifying a value of the variance of the noise term that is needed for the test. The paper includes an illustrative example utilizing a data set relating to a number of U.S. airlines.
Resumo:
This study of the wholesale electricity market compares the efficiency performance of the auction mechanism currently in place in U.S. markets with the performance of a proposed mechanism. The analysis highlights the importance of considering strategic behavior when comparing different institutional systems. We find that in concentrated markets, neither auction mechanism can guarantee an efficient allocation. The advantage of the current mechanism increases with increased price competition if market demand is perfectly inelastic. However, if market demand has some responsiveness to price, the superiority of the current auction with respect to efficiency is not that obvious. We present a case where the proposed auction outperforms the current mechanism on efficiency even if all offers reflect true production costs. We also find that a market designer might face a choice problem with a tradeoff between lower electricity cost and production efficiency. Some implications for social welfare are discussed as well.
Resumo:
An introduction to Fourier Series based on the minimization of the least square error between an approximate series representation and the exact function.
Resumo:
Biometrics applied to mobile devices are of great interest for security applications. Daily scenarios can benefit of a combination of both the most secure systems and most simple and extended devices. This document presents a hand biometric system oriented to mobile devices, proposing a non-intrusive, contact-less acquisition process where final users should take a picture of their hand in free-space with a mobile device without removals of rings, bracelets or watches. The main contribution of this paper is threefold: firstly, a feature extraction method is proposed, providing invariant hand measurements to previous changes; second contribution consists of providing a template creation based on hand geometric distances, requiring information from only one individual, without considering data from the rest of individuals within the database; finally, a proposal for template matching is proposed, minimizing the intra-class similarity and maximizing the inter-class likeliness. The proposed method is evaluated using three publicly available contact-less, platform-free databases. In addition, the results obtained with these databases will be compared to the results provided by two competitive pattern recognition techniques, namely Support Vector Machines (SVM) and k-Nearest Neighbour, often employed within the literature. Therefore, this approach provides an appropriate solution to adapt hand biometrics to mobile devices, with an accurate results and a non-intrusive acquisition procedure which increases the overall acceptance from the final user.
Resumo:
This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM) and k-Nearest Neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices