959 resultados para UPPER XINGU
Resumo:
Parameters of the length–weight relationship of the form W=aLb are presented for 45 demersal fish species caught on the upper continental slope of the Caribbean Sea off Colombia. The b values varied between 2.13 and 4.97, with the mean b = 3.042 (95% CI, 2.887- 3.196).
Resumo:
Since 1984, annual bottom trawl surveys of the west coast (California–Washington) upper continental slope (WCUCS) have provided information on the abundance, distribution, and biological characteristics of groundfish resources. Slope species of the deep-water complex (DWC) are of particular importance and include Dover sole, Microstomus pacificus; sablefish, Anoplopoma fimbria; shortspine thornyhead, Sebastolobus alascanus; and longspine thornyhead, S. altivelis. In the fall of 1994, we conducted an experimental gear research cruise in lieu of our normal survey because of concerns about the performance of the survey trawl. The experiment was conducted on a soft mud bottom at depths of 460–490 m off the central Oregon coast. Treatments included different combinations of door-bridle rigging, groundgear weight, and scope length. The experimental design was a 2 ´ 2 ´ 2 factorial within a randomized complete-block. Analysis of variance was used to examine the effects of gear modifications on the engineering performance of the trawl (i.e. trawl dimensions, variation in trawl dimensions, and door attitude) and to determine if catch rates in terms of weight and number of DWC species and invertebrates were affected by the gear modifications. Trawl performance was highly variable for the historically used standard trawl configuration. Improvements were observed with the addition of either a 2-bridle door or lighter ground gear. Changes in scope length had relatively little effect on trawl performance. The interaction of door bridle and ground gear weight had the most effect on trawl performance. In spite of the standard trawl’s erratic performance, catch rates of all four DWC species and invertebrates were not significantly different than the 2-bridle/heavy combination, which did the best in terms of engineering performance. The most important factor affecting DWC catch rates was ground gear. Scope length and the type of door bridle had little effect on DWC catch rates. Subsequent revisions to survey gear and towing protocol and their impact on the continuity of the slope survey time series are discussed.
Resumo:
This is the Effect of water quality on coarse fish productivity and movement in the Lower River Irwell and Upper Manchester Ship Canal: a watercourse recovering from historical pollution report produced by the Environment Agency in 2003. The aim of this study was to investigate the impact of water quality upon coarse fish population dynamics in a lowland, urban watercourse. All of the research carried was undertaken in the lower River Irwell and upper Manchester Ship Canal, between February 1998 and December 2001. Of particular interest was the natural sustainability of the urban fishery given recent concern raised in the angling community over an apparent decline in coarse fish populations in lowland rivers. The research described in this report has concentrated upon the role of water quality in determining coarse fish population dynamics, and in particular: The impact of water quality upon fish growth and productivity; The impact of poor water quality and low dissolved oxygen concentrations upon fish distribution and movement; The impact of water quality upon the sexual development of fish.
Resumo:
A study of possible causes for extensive mortality of oysters in the Upper Chesapeake Bay was taken on by year-round monitoring of conditions during a two-year period.
Larval supply and recruitment of coral reef fishes to Marine Reserves in the upper Florida Keys, USA
Resumo:
We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.
Resumo:
We analyzed data from National Marine Fisheries Service bottom trawl surveys carried out triennially from 1984 to 1996 in the Gulf of Alaska (GOA). The continental shelf and upper slope (0–500 m) of the GOA support a rich demersal fish fauna dominated by arrowtooth flounder (Atheresthes stomias), walleye pollock (Theragra chalcogramma), Pacific cod (Gadus macrocephalus), Pacific halibut (Hippoglossus stenolepis), and Pacific Ocean perch (Sebastes alutus). Average catch per unit of effort (CPUE) of all groundfish species combined increased with depth and had a significant peak near the shelf break at 150–200 m. Species richness and diversity had significant peaks at 200–300 m. The western GOA was characterized by higher CPUEs and lower species richness and diversity than the eastern GOA. Highest CPUEs were observed in Shelikof Strait, along the shelf break and upper slope south of Kodiak Island, and on the banks and in the gullies northeast of Kodiak Island. Significant differences in total CPUE among surveys suggest a 40% increase in total groundfish biomass between 1984 and 1996. A multivariate analysis of the CPUE of 72 groundfish taxa revealed strong gradients in species composition with depth and from east to west, and a weak but significant trend in species composition over time. The trend over time was associated with increases in the frequency of occurrence and CPUE of at least eight taxa, including skates (Rajidae), capelin (Mallotus villosus), three flatfish species, and Pacific Ocean perch, and decreases in frequency of occurrence and CPUE of several sculpin (Myoxocephalus spp.) species. Results are discussed in terms of spatial and temporal patterns in productivity and in the context of their ecological and management implications.
Resumo:
Empirical orthogonal function (EOF) analysis and regression analysis are used to investigate zonally averaged seasonal temperature anomaly patterns and trends in the lower stratosphere and upper troposphere. The first four EOFs explain 64 percent of the temperature variance and can be related, respectively, to the solar flux (SF) and El Niño/Southern Oscillation (ENSO), to the quasi-biennial oscillation (QBO), to atmospheric carbon dioxide (CO2) and turbidity (TB), and to ENSO. The signal of the fourth EOF is modulated in January to March by the solar flux, with the sense of the modulation determined by the phase of the quasi-biennial oscillation.
Resumo:
Seasonal snow cover in the mountains of the Upper Colorado River Basin is a major source of water for a large portion of the southwestern United States. The extent and amount of this snowpack not only reflects changes in weather patterns and climate but also influences the general circulation through modification of the energy exchange between land and atmosphere. ... Satellite observations and remote sensing techniques can enhance the standard snowpack observations to provide the temporal and spatial measurements required for understanding the role of snow in the surface energy balance and improving the management of water resources.