943 resultados para UNKNOWN MUTATIONS
Resumo:
Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)
Resumo:
Objective: ACTH resistance syndromes are rare, autosomal, and genetically heterogeneous diseases that include familial glucocorticoid deficiency (FGD) and triple A syndrome. FGD has been shown to segregate with mutations in the gene coding for ACTH receptor (MC2R) or melanocortin 2 receptor accessory protein (MRAP), whereas mutations in the triple A syndrome (AAAS, Allgrove syndrome) gene have been found in segregation with triple A syndrome. We describe the clinical findings and molecular analysis of MC2R, MRAR and AAAS genes in five Brazilian patients with ACTH resistance syndrome. Design and methods: Genomic DNA from patients and their unaffected relatives was extracted from peripheral blood leucocytes and amplified by PCR, followed by automated sequencing. Functional analysis was carried out using Y6 cells expressing wild-type and mutant MC2R. Results: All five patients showed low cortisol and elevated plasma ACTH levels. One patient had achalasia and alacrima, besides the symptoms of adrenal insufficiency. The molecular analysis of FGD patients revealed a novel p.Gly116Val mutation in the MC2R gene in one patient and p.Met1Ile mutation in the MRAP gene in another patient. Expression of p.Glyll.6Val MC2R mutant in Y6 cells revealed that this variant failed to stimulate cAMP production. The analysis of the AAAS gene in the patient with triple A syndrome showed a novel g.782_783deITG deletion. The molecular analysis of DNA from other two patients showed no mutation in MC2R, MRAP or AAAS gene. Conclusions: In conclusion, the molecular basis of ACTH resistance syndrome is heterogeneous, segregating with genes coding for proteins involved with ACTH receptor signaling/expression or adrenal gland development and other unknown genes.
Resumo:
Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal `dominant optic atrophy plus` variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44-6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08-4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.
Resumo:
PURPOSE. The goal of this study was to determine whether the medial rectus muscles of patients with a history of medial rectus underaction or overaction show alterations in the process of satellite cell activation when compared with normal age-matched control muscles. METHODS. Medial rectus muscles were obtained with consent from adult patients undergoing surgical resection due to medial rectus underaction or overaction and were prepared for histologic examination by fixation and paraffin embedding. Control muscles were obtained from cornea donor eyes of adults who had no history of strabismus or neuromuscular disease. Cross sections were obtained and stained immunohistochemically for the presence of activated satellite cells, as identified by MyoD immunoreactivity, and the presence of the total satellite cell population, as identified by Pax7 immunoreactivity. The percentages of MyoD- and Pax7-positive satellite cells per 100 myofibers in cross section were calculated. RESULTS. As predicted from results in the literature, MyoD-positive satellite cells, indicative of activation, were present in both the control and resected muscles. In the underacting medial rectus muscles, the percentages of MyoD- and Pax7-positive satellite cells, based on the number of myofibers, were approximately twofold higher than the percentages in the control muscles. In the overacting medial rectus muscles, the percentage of MyoD- positive satellite cells was twofold less than in the control muscles, whereas the percentage of Pax7-positive satellite cells significantly increased compared with that in the control specimens. CONCLUSIONS. The presence of an increased number of activated satellite cells in the resected underacting medial rectus muscles and the decreased numbers of activated satellite cells in the overacting muscles was unexpected. The upregulation in the number of MyoD- positive satellite cells in underacting muscles suggests that there is potential for successful upregulation of size in these muscles, as the cellular machinery for muscle repair and regeneration, the satellite cells, is retained and active in patients with medial rectus underaction. The decreased number of activated satellite cells in overacting MR muscle suggests that factors as yet unknown in these overacting muscles are able to affect the number of satellite cells and/or their responsiveness compared with normal age-matched control muscles. These hypotheses are currently being tested.
Resumo:
Context: Type 1 pseudohypoaldosteronism (PHA1), a primary form of mineralocorticoid resistance, isdueto inactivating mutations of the NR3C2 gene, coding for the mineralocorticoid receptor (MR). Objective: The objective of the study was to assess whether different NR3C2 mutations have distinct effects on the pattern of MR-dependent transcriptional regulation of aldosterone-regulated genes. Design and Methods: Four MR mutations affecting residues in the ligand binding domain, identified in families with PHA1, were tested. MR proteins generated by site-directed mutagenesis were analyzed for their binding to aldosterone and were transiently transfected into renal cells to explore the functional effects on the transcriptional activity of the receptors by cis-trans-cotrans-activation assays and by measuring the induction of endogenous gene transcription. Results: Binding assays showed very low or absent aldosterone binding for mutants MR(877Pro), MR(848Pro), and MR(947stop) and decreased affinity for aldosterone of MR(843Pro). Compared with wildtype MR, the mutations p.Leu843Pro and p.Leu877Pro displayed half-maximal aldosterone-dependent transactivation of reporter genes driven by mouse mammary tumor virus or glucocorticoid response element-2 dependent promoters, whereas MR(848Pro) and MR(947stop) nearly or completely lost transcriptional activity. Although MR(848Pro) and MR(947stop) were also incapable of inducing aldosterone-dependent gene expression ofendogenoussgk1, GILZ, NDRG2, and SCNN1A, MR(843Pro) retained complete transcriptional activity on sgk1 and GILZ gene expression, and MR(877Pro) negatively affected the expression of sgk1, NDRG2, and SCNN1A. Conclusions: Our data demonstrate that MR mutations differentially affect individual gene expression in a promoter-dependent manner. Investigation of differential gene expression profiles in PHA1 may allow a better understanding of the molecular substrate of phenotypic variability and to elucidate pathogenic mechanisms underlying the disease. (J Clin Endocrinol Metab 96: E519-E527, 2011)
Resumo:
Pompe disease (glycogen storage disease type II or acid maltase deficiency) is an inherited autosomal recessive deficiency of acid alpha-glucosidase (GAA), with predominant manifestations of skeletal muscle weakness. A broad range of studies have been published focusing on Pompe patients from different countries, but none from Brazil. We investigated 41 patients with either infantile-onset (21 cases) or late-onset (20 cases) disease by muscle pathology, enzyme activity and GAA gene mutation screening. Molecular analyses identified 71 mutant alleles from the probands, nine of which are novel (five missense mutations c.136T > G, c.650C > T, c.1456G > C, c.1834C > T, and c.1905C > A, a splice-site mutation c.1195-2A > G, two deletions c.18_25del and c.2185delC, and one nonsense mutation c.643G > T). Interestingly, the c.1905C > A variant was detected in four unrelated patients and may represent a common Brazilian Pompe mutation. The c.2560C > T severe mutation was frequent in our population suggesting a high prevalence in Brazil. Also, eight out of the 21 infantile-onset patients have two truncating mutations predicted to abrogate protein expression. Of the ten late-onset patients who do not carry the common late-onset intronic mutation c.-32-13T > G, five (from three separate families) carry the recently described intronic mutation, c.-32-3C > A, and one sibpair carries the novel missense mutation c.1781G > C in combination with known severe mutation c.1941C > G. The association of these variants (c.1781G > C and c.-32-3C > A) with late-onset disease suggests that they allow for some residual activity in these patients. Our findings help to characterize Pompe disease in Brazil and support the need for additional studies to define the wide clinical and pathological spectrum observed in this disease.
Resumo:
Chorea-acanthocytosis (ChAc) is a rare autosomal recessive neurodegenerative disorder caused by loss of function mutations in the vacuolar protein sorting 13 homolog A (VPS13A) gene that encodes chorein. It is characterized by adult-onset chorea, peripheral acanthocytes, and neuropsychiatric symptoms. In the present study, we performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis, of the VPS13A gene in ChAc patients. All 73 exons and flanking regions of VPS13A were sequenced in 35 patients diagnosed with ChAc. To detect CNVs, we also performed real-time quantitative PCR and long-range PCR analyses for the VPS13A gene on patients in whom only a single heterozygous mutation was detected. We identified 36 pathogenic mutations, 20 of which were previously unreported, including two novel CNVs. In addition, we investigated the expression of chorein in 16 patients by Western blotting of erythrocyte ghosts. This demonstrated the complete absence of chorein in patients with pathogenic mutations. This comprehensive screen provides an accurate and useful method for the molecular diagnosis of ChAc. (C) 2011 Wiley-Liss, Inc.
Resumo:
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed ""promiscuous gene expression"" (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80(+) mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.
Resumo:
In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25, In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3, Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis, We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B, This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.
Resumo:
Concentrations of follicle-stimulating hormone (FSH) have an important role in multiple ovulation. An association has been reported between mutations in the FSH receptor (FSHR) in a family with Increased twinning frequency. We sequenced the transmembrane region of FSHR (located on chromosome 2) in 21 unrelated mothers of dizygotic twins and found no differences to the published sequence. A linkage study of 183 sister pairs and trios, in which all sisters had given birth to spontaneous dizygotic twins, excluded linkage to this region of chromosome 2. Wa conclude that mutations in FSHR are not a common cause of familial dizygotic twinning.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or indeterminate 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition. (C) 2001 Wiley-Liss, Inc.
Resumo:
Mutations in the exons of the cyclin-dependent kinase inhibitor gene CDKN2A are melanoma-predisposition alleles which have high penetrance, although they have low population frequencies. In contrast, variants of the melanocortin-1 receptor gene, MC1R, confer much lower melanoma risk but are common in European populations. Fifteen Australian CDKN2A mutation-carrying melanoma pedigrees were assessed for MC1R genotype, to test for possible modifier effects on melanoma risk. A CDKN2A mutation in the presence of a homozygous consensus MC1R genotype had a raw penetrance of 50%, with a mean age at onset of 58.1 years. When an MC1R variant allele was also present, the raw penetrance of the CDKN2A mutation increased to 84%, with a mean age at onset of 37.8 years (P=0.1). The presence of a CDKN2A mutation gave a hazard ratio of 13.35, and the hazard ratio of 3.72 for MC1R variant alleles was also significant. The impact of MC1R variants on risk of melanoma was mediated largely through the action of three common alleles, Arg151Cys, Arg160Trp, and Asp294His, that have previously been associated with red hair, fair skin, and skin sensitivity to ultraviolet light.
Resumo:
Inactivation of p16(INK4a) and/or activation of cyclin-dependent kinase-4 (CDK4) are strongly associated with both susceptibility and progression in melanoma. Activating CDK4 mutations prevent the binding and inhibition of CDK4 by p16(INK4a). A second, more indirect role for CDK4 is in late G(1), where It may sequester the inhibitors p27(KIP1) or p21(CIP1) away from CDK2, and in doing so upregulate the CDK2 activity necessary for cells to proceed completely through G(1) into S phase. As the pivotal residues around the most predominant R24C activating CDK4 mutation are invariant between CDK2 and CDK4, we speculated that the pivotal arginine (position 22 in CDK2), or a nearby residue, may be mutated in some melanomas, resulting in the diminution of its binding and inhibition by p27(KIP1) or p21(CIP1). However, except for a silent polymorphism, we detected no variants within this region of the CDK2 gene in 60 melanoma cell lines. Thus, if CDK2 activity is dysregulated in melanoma it is likely to occur by a means other than mutations causing loss of direct inhibition. We also examined the expression of the CDK2 gene in melanoma cell lines, to assess its possible co-regulation with the gene for the melanocyte-lineage antigen pmel17, which maps less than 1 kb away in head to head orientation with CDK2 and may be transcribed off the same bidirectional promoter. However, expression of the genes is not co-regulated. (C) 2001 Lippincott Williams & Wilkins.
Resumo:
RAD51 colocalizes with both BRCA1 and BRCA2, and genetic variants in RAD51 would be candidate BRCA1/2 modifiers. We searched for RAD51 polymorphisms by sequencing 20 individuals. We compared the polymorphism allele frequencies between female BRCA1/2 mutation carriers with and without breast or ovarian cancer and between population-based ovarian cancer cases with BRCA1/2 mutations to cases and controls without mutations. We discovered two single nucleotide polymorphisms (SNPs) at positions 135 g-->c and 172 g-->t of the 5' untranslated region. In an initial group of BRCA1/2 mutation carriers, 14 (21%) of 67 breast cancer cases carried a c allele at RAD51:135 g-->c, whereas 8 (7%) of 119 women without breast cancer carried this allele. In a second set of 466 mutation carriers from three centers, the association of RAD51:135 g-->c with breast cancer risk was not confirmed. Analyses restricted to the 216 BRCA2 mutation carriers, however, showed a statistically significant association of the 135 c allele with the risk of breast cancer (adjusted odds ratio, 3.2; 95% confidence limit, 1.4-40). BRCA1/2 mutation carriers with ovarian cancer were only about one half as likely to carry the RAD51:135 g-->c SNP. Analysis of the RAD51:135 g-->c SNP in 738 subjects from an Israeli ovarian cancer case-control study was consistent with a lower risk of ovarian cancer among BRCA1/2 mutation carriers with the c allele. We have identified a RAD51 5' untranslated region SNP that may be associated with an increased risk of breast cancer and a lower risk of ovarian cancer among BRCA2 mutation carriers. The biochemical basis of this risk modifier is currently unknown.