948 resultados para Two-domain architecture
Resumo:
Background: The redox proteins that incorporate a thioredoxin fold have diverse properties and functions. The bacterial protein-folding factor DsbA is the most oxidizing of the thioredoxin family. DsbA catalyzes disulfide-bond formation during the folding of secreted proteins, The extremely oxidizing nature of DsbA has been proposed to result from either domain motion or stabilizing active-site interactions in the reduced form. In the domain motion model, hinge bending between the two domains of DsbA occurs as a result of redox-related conformational changes. Results: We have determined the crystal structures of reduced and oxidized DsbA in the same crystal form and at the same pH (5.6). The crystal structure of a lower pH form of oxidized DsbA has also been determined (pH 5.0). These new crystal structures of DsbA, and the previously determined structure of oxidized DsbA at pH 6.5, provide the foundation for analysis of structural changes that occur upon reduction of the active-site disulfide bond. Conclusions: The structures of reduced and oxidized DsbA reveal that hinge bending motions do occur between the two domains. These motions are independent of redox state, however, and therefore do not contribute to the energetic differences between the two redox states, instead, the observed domain motion is proposed to be a consequence of substrate binding. Furthermore, DsbA's highly oxidizing nature is a result of hydrogen bond, electrostatic and helix-dipole interactions that favour the thiolate over the disulfide at the active site.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
The three-dimensional solution structure of the 40 residue amyloid beta-peptide, A beta(1-40), has been determined using NMR spectroscopy at pH 5.1, in aqueous sodium dodecyl sulfate (SDS) micelles, In this environment, which simulates to some extent a water-membrane medium, the peptide is unstructured between residues 1 and 14 which are mainly polar and likely solvated by water. However, the rest of the protein adopts an alpha-helical conformation between residues 15 and 36 with a kink or hinge at 25-27. This largely hydrophobic region is likely solvated by SDS. Based on the derived structures, evidence is provided in support of a possible new location for the transmembrane domain of A beta within the amyloid precursor protein (APP). Studies between pH 4.2 and 7.9 reveal a pH-dependent helix-coil conformational switch. At the lower pH values, where the carboxylate residues are protonated, the helix is uncharged, intact, and lipid-soluble. As the pH increases above 6.0, part of the helical region (15-24) becomes less structured, particularly near residues E22 and D23 where deprotonation appears to facilitate unwinding of the helix. This pH-dependent unfolding to a random coil conformation precedes any tendency of this peptide to aggregate to a beta-sheet as the pH increases. The structural biology described herein for A beta(1-40) suggests that (i) the C-terminal two-thirds of the peptide is an alpha-helix in membrane-like environments, (ii) deprotonation of two acidic amino acids in the helix promotes a helix-coil conformational transition that precedes aggregation, (iii) a mobile hinge exists in the helical region of A beta(1-40) and this may be relevant to its membrane-inserting properties and conformational rearrangements, and (iv) the location of the transmembrane domain of amyloid precursor proteins may be different from that accepted in the Literature. These results may provide new insight to the structural properties of amyloid beta-peptides of relevance to Alzheimer's disease.
Resumo:
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.
Resumo:
Four discontinuous extracellular sequence domains have been proposed to form the ligand binding sites of the ligand-gated ion channel receptor superfamily. In this study, we investigated the role of 12 contiguous residues of the inhibitory glycine receptor that define the proposed loop A ligand binding domain; Using the techniques of site-directed mutagenesis and patch-clamp electrophysiology, four of the 12 residues were shown to have impaired ligand binding. Three mutants, I93A, A101H, and N102A, resulted in significant (17-44-fold) increases in the agonist EC50 values as compared with the wild-type glycine receptor, whereas Hill coefficients, I-max values, and antagonist affinity remained largely unaffected. Consideration of receptor efficacy values indicates that these residues are involved in ligand binding rather than channel activation. A fourth mutant, W94A, failed to give rise to any glycine-activated currents, although cell-surface expression was observed, suggesting that this residue may also be involved in agonist binding. These data provide the most extensive characterization of the loop A ligand binding domain available to date and define two new residue locations, Ile(93) and Asn(102), as contributing to the four-loop model of ligand binding.
Resumo:
Previously, two binding sites for interleukin 5 (IL-5) were identified on the IL-5 receptor alpha chain (IL-5R alpha). They are located within the CD loop of the first fibronectin type III (FnIII)-like domain and the EF loop of the second FnIII-like domain. The first binding site was identified by exploiting the different abilities of human IL-5R alpha (hIL-5R alpha) and mouse IL-5R alpha (mIL-5R alpha) to bind hIL-5. Here we show that ovine IL-5 (oIL-5) has the ability to activate the hIL-5R alpha but not the mIL-5R alpha. By using chimeras of the mIL-5R alpha and hIL-5R alpha we demonstrate that residues within the first and third FnIII-like domains of mIL-5R alpha are responsible for this lack of activity. Furthermore, mutation of residues on hIL-5R alpha to mIL-5R alpha within the predicted DE and FG loop regions of the third FnIII domain reduces oIL-5 activity, These results show that regions of the third FnIII domain of IL-5R alpha are involved in binding, in addition to the regions in domains one and two of the IL-5R alpha that were identified in an earlier study. (C) 2000 Academic Press.
Resumo:
The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.
Resumo:
The structure of the Tus-Ter DNA replication fork arrest complex of Escherichia coli reveals a novel architecture for the bound Tus protein and a new type of DNA-binding motif, The structure of the complex may explain how Tus can block movement of a replication fork approaching from one direction and not the other.
Resumo:
The SH3 domains of src and other nonreceptor tyrosine kinases have been shown to associate with the motif PXXP, where P and X stand for proline and an unspecified amino acid, but a motif that binds to the SH3 domain of myosin has thus far not been characterized. We previously showed that the SH3 domain of Acanthamoeba myosin-IC interacts with the protein Acan125. We now report that the Acan125 protein sequence contains two tandem consensus PXXP motifs near the C terminus. To test for binding, we expressed a polypeptide, AD3p, which includes 344 residues of native C-terminal sequence and a mutant polypeptide, AD3 Delta 977-994p, which lacks the sequence RPKPVPPPRGAKPAPPPR containing both PXXP motifs. The SH3 domain of Acanthamoeba myosin-IC bound AD3p and not AD3 Delta 977-994p, showing that the PXXP motifs are required for SH3 binding. The sequence of Acan125 is related overall to a protein of unknown function coded by Caenorhabditis elegans gene K07G5.1. The K07G5.1 gene product contains a proline-rich segment similar to the SH3 binding motif found in Acan125. The aligned sequences show considerable conservation of leucines and other hydrophobic residues, including the spacing of these residues, which matches a motif for leucine-rich repeats (LRRs). LRR domains have been demonstrated to be sites for ligand binding. Having an LRR domain and an SH3-binding domain, Acan125 and the C. elegans homologue define a novel family of bifunctional binding proteins.
Resumo:
PURPOSE: To compare the ability of Fourier-domain (FD) optical coherence tomography (3D OCT-1000; Top, con, Tokyo, Japan) and time domain (TD) OCT (Stratus; Carl Zeiss Meditec Inc, Dublin, California, USA) to detect axonal loss in eyes with band atrophy (BA) of the optic nerve. DESIGN: Cross-sectional study. METHODS: Thirty-six eyes from 36 patients with BA and temporal visual field (VF) defect from chiasmal compression and 36 normal eyes were studied. Subjects were submitted to standard automated perimetry and macular and retinal nerve fiber layer (RNFL) measurements were taken using 3D OCT-1000 and Stratus OCT. Receiver operating characteristic (ROC) curves were calculated for each parameter. Spearman correlation coefficients were obtained to evaluate the relationship between RNFL and macular thickness parameters and severity of VF loss. Measurements from the two devices were compared. RESULTS: Regardless of OCT device, all RNFL and macular thickness parameters were significantly lower in eyes with BA compared with normal eyes, but no statistically significant difference was found with regard to the area under the ROC curve. Structure-function relationships were also similar for the two devices. In both groups, RNFL and macular thickness measurements were generally and in some cases significantly smaller with 3D OCT-1000 than with Stratus OCT. CONCLUSIONS: The introduction of FD technology did not lead to better discrimination ability for detecting BA of the optic nerve compared with TD technology when using the software currently provided by the manufacturer. 3D OCT-1000 FD OCT RNFL and macular measurements were generally smaller than TD Stratus OCT measurements. Investigators should be aware of this fact when comparing measurements obtained with these two devices. (Am J Oplathalmol 2009;147: 56-63. (c) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.
Resumo:
Silver-Russell syndrome (SRS) is characterized by severe intrauterine and postnatal growth retardation in association with a typical small triangular face and other variable features. Genetic and epigenetic disturbances are detected in about 50% of the patients. Most frequently, SRS is caused by altered gene expression on chromosome 11p15 due to hypomethylation of the telomeric imprinting center (ICR1) that is present in at least 40% of the patients. Maternally inherited duplications encompassing ICR1 and ICR2 domains at 11p15 were found in a few patients, and a microduplication restricted to ICR2 was described in a single SRS child. We report on a microduplication of the ICR2 domain encompassing the KCNQ1, KCNQ1OT1, and CDKN1C genes in a three-generation family: there were four instances of paternal transmissions of the microduplication from a single male uniformly resulting in normal offspring, and five maternal transmissions, via two clinically normal sisters, with all the children exhibiting SRS. This report provides confirmatory evidence that a microduplication restricted to the ICR2 domain results in SRS when maternally transmitted. (C) 2011 Wiley-Liss, Inc.
Resumo:
We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 months of age, associated with cervical lymphadenopathy, which improved with oral corticosteroid treatment. Relevant laboratory findings were the presence of anemia, thrombocytopenia, and positive direct and indirect Coombs tests. He was not an offspring of consanguineous parents. Two cervical lymph node biopsies were performed, at 4 years and at 6 years of age. In both lymph nodes, there was marked paracortical expansion by lymphocytes in variable stages of immunoblastic transformation and a very high cell proliferating index. Some clear cells were also present, raising the suspicion of malignant lymphoma. In one of the lymph nodes, there was also a focus rich in large histiocytes with round nuclei and emperipolesis, consistent with focal Rosai-Dorfman disease. Immunostaining showed numerous CD3+ cells, many of which were double-negative (CD4- CD8-) and expressed CD57, especially around the follicles. Molecular studies of the lymph node biopsy showed a point deletion (4-base pair deletion) in exon 9 of the FAS gene (930del TGCT), which results in 3 missense amino acids. (c) 2008 Elsevier Inc. All rights reserved.